
1

Random Linear Network Coding: Use cases and
Implementations

Niklas Haas
niklas.haas@uni-ulm.de

Abstract—We establish a basic introduction to random linear network coding and briefly touch on the ways it can be used to improve
point-to-point communication, one-to-many broadcast, multicast, content delivery, peer-to-peer mesh networks and more. We also
investigate and briefly summarize some examples and evaluations of random linear network coding being used in the wild, including
libraries and actual products. Finally, we touch on some implementation difficulties, current limitations as well as avenues for further
research.

F

1 INTRODUCTION

N ETWORK coding is a class of algorithms and tech-
niques that has been generating interest through-

out most of the 21st century due to its interesting proper-
ties. It was originally researched by Ahlswede et al. as a
way to bypass fundamental limitations of routing-based
networks [3]. In this context, routing refers to any tech-
nique in which data is transmitted throughout a network
by sending exact copies of individual packets between
points. In contrast to this, network coding permits nodes
to modify the packets as they’re sending them — in
particular, to create linear combinations thereof. In some
sense, network coding is a generalization of routing, but
the techniques involved are very different.

2 NETWORK CODING

For a simple illustration of routing’s limitations, the
canonical example is to consider a butterfly network (see
figure 1). In this network, two sources have pieces of
information A and B (respectively), and two sinks both
want A and B. When only routing, connections on the
common path shared by both sources and both sinks
(here labelled A + B) can either transmit A (benefiting
the first source) or B (benefiting the second source) at
a time, but never both. With network coding, they can
instead transmit a linear combination of both A and
B (in this example A + B) at the same time. The two
receiving ends can then reconstruct A from A + B and
B (or B from A + B and A) by calculating the linear
difference (A+B)−B. As a result, it’s as if these common
paths were used by both sources simultaneously, each
independent of the other. In general, network coding can
achieve the maximum possible information flow in any
multicast scenario as long as the linear combinations are
picked correctly [3].

In addition to maximizing information flow for mul-
ticast networks, network coding can also be used to

cba Diese Arbeit steht unter einer Creative Commons Namensnennung -
Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz.
http://creativecommons.org/licenses/by-sa/3.0/de/

A

B

A

A

A

B

B

B

B

A

A+B

A
+B

A
+B

Figure 1: Butterfly network [3].

minimize the amount of overhead needed to compensate
for packet loss in individual links. For example, when
transmitting pieces of information A, B and C from one
node to another, the first node could first send A, B and
C, then A+B, B +C, A+B, then A+B +C (stopping
when the second node verifies successful delivery). If,
for example, B gets dropped, then it can be recovered
from A, C and A+B. This process is unique in that the
sender does not need to know which packets the second
node is missing in order to continue sending additional
redundant information.

One deficiency in this example can be seen when
considering the case of C being dropped: The packet
A + B would be fully redundant with information that
the receiver already has, and is therefore wasted. This is
a result of the fact that A+B is a linear combination of A
and B. For network coding to achieve optimal efficiency,
therefore, all packets should be linearly independent
from every previously received packet (or as close to this
as possible). For this example, such a packet sequence
could be A, B, C, A+B+C, but after this it’s no longer

Seminar on Select Topics in Distributed Systems · SS 2016, Institute of Distributed Systems, Ulm University

niklas.haas@uni-ulm.de
http://creativecommons.org/licenses/by-sa/3.0/de/


2

possible to guarantee that property. (Which of the three
remaining possible packets A + B, B + C and A + C is
linearly independent of the two already received packets
depends on the exact packets that were received)

The limitation arises here because these examples were
effectively only considering vectors over GF (2), the field
of single bits. To improve the process, one naturally
has to extend the field size to larger finite fields, which
improves the number of linearly independent vectors
one can code in sequence in exchange for reducing the
processing efficiency (since restoring the original packets
A, B and C requires Gauss-Jordan elimination over the
chosen finite field).

Another deficiency arises from the fact that the receiv-
ing end has to know which of the vectors a received
packet actually corresponds to, so at least some addi-
tional metadata needs to be transmitted to indicate the
sequence number or linear coefficients used.

2.1 Random Linear Network Coding
Since agreeing on an exact set of coefficients to send
each packet with is difficult if not outright impossible
(when considering multicast networks with incomplete
knowledge), a good way to probabilistically approximate
an optimal result is to simply pick the mixing coeffi-
cients randomly. The probability of successful decoding
improves exponentially as the field size increases [17],
making e.g. GF (28), the field of 8-bit vectors, more than
sufficient for real-world usage. Network coding with
random linear coefficients is known as random linear
network coding (RLNC).

2.2 Terminology
When using network coding in the real world, several
parameters and definitions need to be fixed. An arbi-
trarily long stream of information S is split up into
individual symbols S0, S1, . . . of a fixed size (known as
the symbol size). For example, this symbol size could
be roughly the MTU (Maximum Transfer Unit) of an
individual packet in a network.1 It is expected that each
symbol is either delivered, or not delivered — but never
delivered only partially.

In the simplest technique, a fixed number of these
symbols S0, S1, . . . SG are grouped into a so-called gen-
eration of size G (the generation size), which will be
transmitted until completion before moving on to the
next generation. Linear combinations of symbols are
made only within each generation, and once G linearly
independent vectors from a generation have been re-
ceived, the entire generation can be restored as a unit
using Gauss-Jordan elimination. In theory a generation
could be large enough to cover an entire file that needs
to be transmitted, but for latency and computational
efficiency reasons this is often undesirable.

1. Note that additional room needs to be made for coding the linear
coefficients, so the calculation of an optimal symbol size based on the
MTU needs to take these into account.

Finally, the field size itself needs to be known. Typi-
cally this is GF (28), which fits into a byte on common
computer platforms and is small enough to be realizable
efficiently but large enough to provide realistic chances
of picking independent vectors at random.

3 SCENARIOS

RLNC is a versatile technology that can be used in a
number of different real-world usage scenarios. This sec-
tion seeks to cover some of the most important examples
and how RLNC could be used to improve them.

3.1 Reliable Point-to-point Communication
A mere point-to-point link is already enough to show
the benefits of (random or deterministic) linear network
coding. If a single packet gets lost during transmission,
its contents can be reconstructed on the receiving side as
long as a sufficient number of other, linearly independent
packets within the same generation have been received.
What this means for transmission is that the sender
merely needs to keep on sending (ideally unique) linear
combinations of the generation until the receiver has
received enough to reconstruct everything [16].

In this scheme there is no pre-determined rate of
redundancy during transmission — rather, it emerges as
a dynamic property of how many coded packets had to
be sent for the receiver to recover everything. As a conse-
quence, the level of redundancy will dynamically grow
to meet the needs of the link. A connection with next to
no packet loss will impose almost no overhead, whereas
a connection with 10% packet loss would require some-
thing on the order of 10% additional transmissions of
random linear combinations. RLNC can therefore use the
hardware almost optimally without requiring advance
knowledge of its reliability.2

In addition to this, in a point-to-point connection, a
RLNC implementation can start transmitting each gener-
ation in systematic mode, where every packet gets sent in
sequence and uncoded [15]. Since the receiving end will
have received no packets to begin with, every received
packet will be linearly independent. Once every original
packet has been transmitted once, the sender can then
start sending random linear combinations of them as
usual.

3.2 One-to-many Broadcast
Multicast and broadcast problems are a good example of
RLNC’s advantages over routing with TCP. If one source
needs to transmit an identical chunk of data to arbitrarily
many clients, each of which have some small amount of
packet loss, then RLNC’s necessary redundant overhead

2. Unnecessary overhead can still be incurred due to the nonzero
probability that a randomly chosen vector will be a linear combination
of already received vectors, and therefore provide no information.
As the field size and generation length increases, this probability
approaches 0, at the cost of computational expense.



3

is determined by the maximum of the individual error
rates, rather than their sum [26].

This is due to the fact that any sufficient number of
linearly independent packets can be used to reconstruct a
generation, regardless of which other packets may have
been dropped. As such, simply sending additional linear
combinations will simultaneously correct the errors for
all clients that have experienced packet loss, without
the source needing to know anything about the clients.
This is especially important in environments where a
single source can broadcast the same packet to multiple
clients at the same time (for example, a wireless network
or a grid network with multicast). In contrast, TCP
requires the sender to re-broadcast a different symbol for
every client, and also require the clients to use relatively
expensive signalling in order to notify the sender about
exactly which packets arrived and which didn’t.

In practical terms, when only best-effort delivery is
required (for example streaming live video at events), an
error rate can be estimated at the source and plugged
into the RLNC implementation. That level of redun-
dancy will then be automatically sent in advance by the
source without needing feedback from individual clients
(a technique known as forward error correction). Depend-
ing on the chosen error correction rate, integrity of the
generation can be ensured on a satisfactory fraction of
the clients.

3.3 Large-scale Content Distribution

A variant of the broadcast scenario dominates the World
Wide Web in the form of content delivery networks (CDNs).
A large CDN consists of many different servers, each of
which have copies of a given file, and many different
clients, each of which request said file. Classically, all
clients exist independently of one another, and each
receive a full copy of the file from exactly one of the
sources. Horizontal bandwidth (amongst clients) as well
as extra bandwidth from additional links to different
servers are wasted. RLNC permits the use of these
additional links to dramatically reduce the number of
overall packets that need to be sent at the source [15].

Some CDNs have already started using existing peer-
to-peer file-sharing protocols such as BitTorrent for this
purpose [4]. While providing similar benefits to RLNC,
BitTorrent suffers from multiple drawbacks which de-
crease its performance [12]. In particular, BitTorrent peers
need to make a good decision about what chunks of a
file to request from where — because different chunks
have different levels of global representation. The status
quo is to use a “local rarest” policy, in the hopes of this
representing chunks that are also rare globally. But this
can, for example, cause unnecessary strain on the source
as multiple different peers suddenly try requesting the
same rare chunks from the only peer that has them [12].
In addition to this, files can be left “dead” if a single
chunk is missing from every single peer. Even though
many different peers might store many different copies

of the same few chunks, they cannot use these chunks
to reconstruct the missing chunk amongst themselves.

RLNC solves the majority of these problems [12], in
part due to the fact that the set of possible coded symbols
is very large (which makes duplicate information rare),
and in part due to the fact that clients do not need to
estimate global symbol rarity in order to make decisions
about what symbols to send to their peers — as long as
the field size is high enough, almost any random linear
combination will suffice.

Note that the claimed improvement over BitTorrent
has been contested [8], and improvements to the BitTor-
rent algorithm cover the same deficiencies (which is part
of the reason why BitTorrent still works well and is used
widely for file sharing at extremely large scales in 2016).

Content delivery networks for video streaming (such
as Netflix and YouTube) have been making up the vast
majority of bandwidth on the Internet since at least
2010 [24], according to one study by the networking firm
Sandvine. Presumably, the majority of this bandwidth
is streaming the same few episodes and movies to mil-
lions of people simultaneously — in other words, the
majority of the traffic on the Internet is redundant and
highly centralized. By using RLNC (or other peer-to-peer
networking technologies) to fully utilize the Internet’s
connectivity, the effective use of all this bandwidth could
be dramatically improved in practice, raising consumer
network speeds as well as reducing costs.

3.4 Ad-hoc Meshed Networks
Most traditional network infrastructures are highly tree-
shaped. Clients are ordered into hierarchies, and end-
points typically connect to an “upstream” gateway that
is responsible for delivering content to the rest of the
network. Central traffic is dominated by relatively few,
large exchanges and backbones connecting them. In
contrast to this, a mesh network has a mostly grid-
like topology: Instead of being ordered into hierarchies,
peers homogeneously connect with their neighbours in
every part of the network. Such topologies are especially
prevalent in off-the-grid ad-hoc networks (e.g. Project
Byzantium [14]) or virtual private networks that piggy-
back on top of existing infrastructure (e.g. I2P [2] or
cjdns [5]).

TreeMesh
Figure 2: Mesh network topology comparison [20].

In a mesh network, any two hosts are typically con-
nected by a very high number of different paths. Current
mesh networks rely on point-to-point communication



4

among every hop, which at best means that the overall
bandwidth between clients is that of the best single path
between them. When using RLNC, however, multiple
distinct paths can be combined to form a single, large
path that has a much higher overall bandwidth. To
realize this, each hop along the way needs to (randomly)
recode previously received packets from a generation
and send them out to other peers (in the right direction).
As many different linearly independent packets arrive at
the receiver from different paths, the receiver will receive
the minimum number of required packets to decode a
generation much more quickly than when relying on
individual paths alone [11].

A limited version of the same principle can also be
applied on top of traditional network infrastructure: If a
host has multiple different uplinks (for example, a phone
with both LTE and Wi-Fi connections, or a phone located
at the edge of two LTE cells) or two hosts combine
together to “share” their uplinks (e.g. two cooperating
neighbours), the connections can be used in combination
to transmit the net total of their bandwidths in a reliable
way, that is independent of their relative bandwidths or
degrees of packet loss [22].

3.5 Distributed Storage

The techniques from network coding can also be applied
to domains that initially seem to be unrelated to network
communications, such as distributed storage systems.
The key principle is the same: By combining enough
linearly independent versions of a file, the original file
can be reproduced. By storing as many extra linear
combinations as required, a distributed storage system
can achieve any level of redundancy without requiring
much configuration or complicated book-keeping. This
makes the technique suitable for use in highly decentral-
ized storage networks, for example peer-to-peer storage,
large data centers or for storage in wireless networks.
This approach allows for near-optimal trade-off between
redundancy and reliability [9] because the number of
redundant linear combinations can be chosen freely.

[9] also discusses a variant of linear network codes
known as minimum bandwidth regenerating (MBR) codes,
which can be used to efficiently construct new, unique
linear combinations of existing storage fragments with-
out needing to inspect every single fragment (by using
a storage pattern that provides asymptotic bounds on
the independence of symbols). This makes it suitable for
use in bandwidth-limited environments where nodes are
expected to enter and leave the network at a high rate,
while still providing reliability guarantees.3 In addition
to using network coding to store redundant copies,
network coding can also be used for communication
inside a distributed storage system, much in the same
way as in section 3.4.

3. This is in contrast to randomly picking linear coefficients, which
can only provide reliability guarantees asymptotically.

4 IMPLEMENTATIONS

Currently available real-world implementations of
RLNC can be roughly divided into three categories:
general-purpose real-world network coding libraries, ex-
perimental real-world platforms using these libraries,
and experimental academic implementations. We will
briefly summarize some of the most interesting proto-
cols, implementations and academic results.

4.1 Avalanche

Microsoft’s Avalanche is a protocol for peer-to-peer file
distribution originally proposed by Microsoft in [12] and
later developed into a public customer technology pre-
view called Microsoft Secure Content Distribution (MSCD),
which was used to distribute Microsoft Visual Studio
2008 Beta-2 [23]. This marks one of the first times RLNC
has been publicly demonstrated as being a viable alter-
native to BitTorrent and other file distribution systems,
and also validates that RLNC can largely simplify the
complex block propagation scheduling issues involved
in BitTorrent [6].

Microsoft has recently introduced peer-to-peer distri-
bution of updates into Windows 10. While the exact
technology used in that system is unknown and pre-
sumably proprietary in nature, it’s reasonable to assume
Avalanche could be involved.

4.2 R2

R2 is a peer-to-peer live streaming approach developed
by Wang et al. which fully utilizes RLNC [31] to de-
liver video in incremental chunks from one source to
many clients. The real-time and segmented nature of
live video streaming imposes additional implementation
challenges [6], since the file must be made available
roughly in-order to all peers, and because the file is
generated and consumed in realtime. If data arrives
too late, it is discarded (and therefore a huge waste of
bandwidth).

4.3 UUSee

UUSee [1] is a large-scale real-world peer-to-peer video
streaming platform developed by Liu et al. which is
currently operational and uses RLNC to deliver video to
clients [19]. The measurement studies in [19] confirm the
effectiveness of RLNC in achieving shorter initial buffer-
ing delay, faster seeks, minimization of server bandwidth
usage, and highly reliable video playback.

Instead of embedding the linear coefficients in every
single coded symbol, UUSee instead uses a consistent
pseudo-random number generator (PRNG) and only trans-
mits initial seeds where necessary. This is done in part
due to UUSee’s choice to use a small symbol size to min-
imize the amount of wasted bandwidth for redundant
symbols and increase the chance of successful decoding
for a given number of received symbols.



5

4.4 Kodo
Kodo [25] is a general-purpose network coding library
developed by Steinwurf ApS. It is based on their custom
library for efficient, CPU-optimized finite field arith-
metic, known as Fifi. Kodo is cross-platform, runs on
both desktop and mobile environments, and comes with
high-level bindings to a number of popular program-
ming languages. Steinwurf supplies usage documenta-
tion and examples for all of these, as well as explana-
tions about what network coding is and how to use it.
While Kodo is supplied under a research- and education-
friendly license, it is not free software, and must be
licensed commercially for real-world applications. This
may hinder its adoption in actual products.

A collaboration between researchers from MIT, Cal-
tech and the University of Aalborg known as Code On
Technologies has evaluated Kodo against Intel’s Intelli-
gent Storage Library as well as Jerasure, which are two
libraries for Reed-Solomon erasure coding (an alternative to
RLNC popular in the area of big data storage [21]) and
found it to be up to 5x faster in the context of storage
area networks (SANs) [22]. Code On has also claimed
a 5x improvement in video streaming bandwidth when
examining a lossy Wi-Fi connection with a 3% error
rate, comparing Kodo’s RLNC against native TCP [22].
They say this is because RLNC did not require expensive
retransmissions when packets were lost.

4.4.1 wurf.it
wurf.it [28] is a video streaming platform being devel-
oped by Steinwurf as a proof-of-concept based on Kodo.
While not yet available to the public, Steinwurf has
released multiple public tech demos and other examples
of it in action. Using RLNC, it can be used to broadcast
video streams in realtime to a high number of wireless
clients simultaneously, while achieving low latency and
high reliability. They intend it to be easy-to-use and
compatible with most mobile devices [28].

4.5 Lava
Lava was developed by Wang et al. as a real-world
testbed for evaluating the computational efficiency and
network benefits of RLNC. To establish a fair compar-
ison, they simulate a real-world network and bench-
mark a reference implementation of a RLNC-based live
streaming protocol against a reference implementation
using existing peer-to-peer technologies (similar to e.g.
CoolStreaming or PPLive). They pick the field GF (28)
and vary the generation size, settling on G = 32. They
find that picking a low generation size and very high
symbol size (as high as 256KB) works best for reducing
the overall amount of processing, coefficient overhead
and transmission time needed to fully transmit a file [30].

They come to the conclusion that RLNC offers de-
creased bandwidth consumption, better performance
when bandwidth capacity barely exceeds the require-
ments, and improved buffer consistency as peers dy-
namically leave and join the network. Their evaluations

of the computational cost introduced by network cod-
ing suggests that decode times are very low at typical
media streaming rates, and negligible when progressive
Gauss-Jordan elimination (as discussed in section 5.3) is
used. They also produce numerous graphs evaluating
the effects of tuning RLNC’s various parameters [30].

4.6 CUDA
Chu et al. have developed a GPU-accelerated implemen-
tation of Gauss-Jordan elimination using CUDA, which
can achieve decoding performance on the order of a few
hundred Mbps using contemporary graphics hardware
of 2009 (which is about equivalent in processing power
to the latest generation of mobile phones in 2016 [29]),
a result which they demonstrate is a 1-2 order of mag-
nitude speedup over CPU implementations [7].

This result also includes GPU-accelerated implemen-
tations of homomorphic hash functions needed for en-
suring data integrity and preventing poisoning attacks
(as discussed in section 5.1). They pick the field GF (28)
and generation sizes 64 ≤ G ≤ 256.

5 PROBLEMS AND RESEARCH TRENDS

While the benefits of RLNC are numerous and have been
demonstrated in practice, it also (inevitably) comes with
implementation challenges and open topics of current
research.

5.1 Vulnerability to malicious poisoning
All peer-to-peer systems suffer from poisoning attacks
(here also known as jamming or pollution attacks) in
which a malicious peer sends out invalid or altered data.
Normally such attacks are mitigated by comparing the
checksums of received chunks against known checksums
(e.g. from a BitTorrent’s file metadata or Merkle tree
root). In a system based on routing, like BitTorrent, this
means that a malicious peer can at best waste some
fraction of a client’s download bandwidth (equal in total
to its own upload bandwidth). Once that client realizes
the malicious peer is sending bad data, it will typically
blacklist the peer and use other connections instead.

When using RLNC, however, these attacks become a
more worrying problem: Not only is it difficult to use
hashes to verify integrity (since the data you receive
will be a linear combination of many different chunks,
which each have their own individual hashes), but also
because a single bogus symbol will potentially cause
the entire generation to fail decoding [6]. Additionally,
if a peer is mixing a single bogus block in with other
genuine blocks, the resulting block is also bogus — so
an attacker’s outgoing bandwidth is amplified by all its
peers (and their peers, and so forth).

One possible countermeasure to this style of pollution
attack can be mitigated by using a homomorphic hash
function, which is a hash function h with the property
that h(x ⊕F y) = h(x) ⊕h h(y) for all x, y in the chosen



6

finite field (F,⊕F ). Conventional hash functions such
as SHA256 etc. do not satisfy this property. However,
hash functions which do can be constructed based on
modular exponentiation, since gx+y ≡ gx + gy mod p.
An example of such a construction is given in [6].
These homomorphic hash functions are further sources
of inefficiency in practical implementations, especially
since they are typically orders of magnitude slower than
conventional hash functions.

One possible approach to cope with the gross in-
efficiency of homomorphic hash function checking is
to use cooperative security schemes [13] in which peers
dynamically join trust groups in which hash checking
is distributed, and within which peers use light-weight
secure checksums to verify identity and prove coopera-
tion.

5.2 Confidentiality and privacy
RLNC is particularly susceptible to attacks involving
traffic analysis [6], and also reveals to users of a peer-
to-peer system who else is using the same system to
download the same file (much in the way the public
BitTorrent swarm does).

To combat these, it’s possible to use novel techniques
such as employing homomorphic encryption on the coef-
ficients of each coded symbol [10]. A network coding
router can then use these encrypted coefficients, along-
side inexpensive addition operations on the encrypted
group, to mix new random linear combinations of the in-
coming coded symbols without knowing any of their de-
cryption keys. Similar to homomorphic hash functions,
homomorphic encryption functions have the property
that E(k, x ⊕F y) = E(k, x) ⊕E E(k, y). (Examples arise
again in modular exponentiation, e.g. unpadded RSA or
ElGamal)

RLNC can also be intrinsically extended into a cipher
in its own right [18], providing message confidentiality
for “free” on top of the algorithms that are already being
used [32]. More work in this direction is certainly not
wasted.

5.3 Performance issues and latency
Both Gauss-Jordan elimination and homomorphic hash
functions are very slow to compute. Even modern de-
vices struggle to saturate common household connec-
tions with current software implementations, while also
consuming more power. However, processing overhead
can be decreased in exchange for increasing bandwidth
overhead by picking smaller generation sizes.4 Dedicated
application-specific integrated circuits (ASICs) for perform-
ing the algorithms would also help with both power
usage and performance tremendously, so there are still
lots of promises for future growth.

4. This bandwidth overhead comes from the fact that a smaller
generation size is less likely to be decoded successfully after G random
linear symbols have arrived [27], so additional symbols may need to
be transmitted.

While this does not help with power efficiency or
throughput limits, a way to mask the decoding time
needed per generation is to do partial elimination of
individual symbols as they arrive [30], in essence hiding
the computational expense in the time needed to trans-
mit the rest of the generation. Once the final symbol has
arrived, if everything else has already been eliminated
as much as possible, the final operation is cheap. This
technique is known as progressive decoding.

Since every symbol in a generation is made avail-
able at the same time, the minimum latency of such
a signal is bound by the time needed to transmit an
entire generation. The generation size can be decreased
to compensate for this, but by doing so, the field size
needs to be increased at the same time (which increases
the computational overhead) in order to maintain the
same overall bandwidth consumption.

Computational
complexity

Minimum
latency

Bandwidth
overhead

Fi
el

d
si

ze
Both

G
eneration

size

Figure 3: approximate 3-way tradeoff

In other words, there is a 3-way trade-off between
computational complexity, bandwidth consumption and
latency in which decreasing any parameter requires in-
creasing one of the two others (see figure 3).

6 CONCLUSION

While the implementation of RLNC is not without its
hurdles, we have demonstrated multiple scenarios in
which RLNC could prove to be a valuable asset for
improving the status quo of peer-to-peer and multicast
networks, as well as a number of emerging implemen-
tations that are moving towards a realization of these
goals.

Further research in this area is certainly not wasted,
and experimental implementations should be encour-
aged and studied. File sharing networks and video
streaming platforms are likely to be the first imple-
mentations of RLNC that gain popularity, but it’s not
unthinkable that in the future, RLNC might dominate
network traffic in general.

REFERENCES
[1] “UUSee,” 2013. [Online]. Available: http://www.uusee.com

[Accessed: 2016-06-01]

http://www.uusee.com


7

[2] “The Invisible Internet Project,” 2016. [Online]. Available:
https://geti2p.net/en/ [Accessed: 2016-05-06]

[3] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” Information Theory, IEEE Transactions on, vol. 46,
no. 4, pp. 1204–1216, 2000.

[4] Blizzard Entertainment, “Blizzard FAQ,” 2016. [Online].
Available: http://us.blizzard.com/en-us/company/about/legal-
faq.html [Accessed: 2016-05-02]

[5] Caleb James DeLisle, “cjdns,” 2016. [Online]. Available: https:
//github.com/cjdelisle/cjdns [Accessed: 2016-05-06]

[6] X. Chu and Y. Jiang, “Random linear network coding for peer-to-
peer applications,” Network, IEEE, vol. 24, no. 4, pp. 35–39, 2010.

[7] X. Chu, K. Zhao, and M. Wang, NETWORKING 2009: 8th
International IFIP-TC 6 Networking Conference, Aachen, Germany,
May 11-15, 2009. Proceedings. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, ch. Practical Random Linear Network
Coding on GPUs, pp. 573–585. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-01399-7 45

[8] Cohen, Bram, “Avalanche,” 2005. [Online]. Available: http:
//bramcohen.livejournal.com/20140.html [Accessed: 2016-06-04]

[9] A. G. Dimakis, P. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,”
Information Theory, IEEE Transactions on, vol. 56, no. 9, pp. 4539–
4551, 2010.

[10] Y. Fan, Y. Jiang, H. Zhu, and X. S. Shen, “An efficient privacy-
preserving scheme against traffic analysis attacks in network
coding,” in INFOCOM 2009, IEEE. IEEE, 2009, pp. 2213–2221.

[11] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an
instant primer,” ACM SIGCOMM Computer Communication Review,
vol. 36, no. 1, pp. 63–68, 2006.

[12] C. Gkantsidis and P. Rodriguez, “Network coding for large
scale content distribution,” in IEEE INFOCOM, no. MSR-
TR-2004-80, March 2005, p. 12. [Online]. Available: http:
//research.microsoft.com/apps/pubs/default.aspx?id=67246

[13] C. Gkantsidis, P. Rodriguez et al., “Cooperative security for net-
work coding file distribution.” in INFOCOM, vol. 3, 2006, p. 5.

[14] HacDC, “Project Byzantium,” 2016. [Online]. Available: http:
//project-byzantium.org/about/ [Accessed: 2016-05-06]

[15] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and T. Larsen, “Network
coding for mobile devices - systematic binary random rateless
codes,” in 2009 IEEE International Conference on Communications
Workshops, June 2009, pp. 1–6.

[16] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi,
and B. Leong, “A random linear network coding approach to
multicast,” IEEE Transactions on Information Theory, vol. 52, no. 10,
pp. 4413–4430, Oct 2006.

[17] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The
benefits of coding over routing in a randomized setting,” 2003.

[18] L. Lima, M. Médard, and J. Barros, “Random linear network
coding: A free cipher?” in Information Theory, 2007. ISIT 2007. IEEE
International Symposium on. IEEE, 2007, pp. 546–550.

[19] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-scale operational
on-demand streaming,” Population, vol. 100, no. 200, p. 3000, 2010.

[20] Maksim, “Network Topologies,” 2006. [Online]. Available: https:
//en.wikipedia.org/wiki/File:Butterfly network.gif [Accessed:
2016-07-02]

[21] Mulnix, David, “Intel and Qihoo 360 Internet Portal
Datacenter - Big Data Storage Optimization Case Study,”
2014. [Online]. Available: https://software.intel.com/en-
us/articles/intel-and-qihoo-360-internet-portal-datacenter-big-
data-storage-optimization-case-study [Accessed: 2016-05-27]

[22] S. M. Patterson, “How MIT and Caltech’s coding breakthrough
could accelerate mobile network speeds,” 2014. [Online]. Avail-
able: http://www.networkworld.com/article/2342846 [Accessed:
2016-05-04]

[23] P. Rodriguez, “Avalanche is now live: Microsoft secure content
distribution (mscd),” 2007.

[24] Sandvine, “Global Internet Phenomena Report.” [Online].
Available: https://www.sandvine.com/trends/global-internet-
phenomena/ [Accessed: 2016-06-05]

[25] Steinwurf ApS, “Kodo Network Coding Library,” 2016. [Online].
Available: http://steinwurf.com/kodo/ [Accessed: 2016-05-01]

[26] ——, “Recoding Data,” 2016. [Online]. Avail-
able: http://docs.steinwurf.com/kodo/kodo-cpp/tutorial/
recoding data.html [Accessed: 2016-05-01]

[27] ——, “The basic functionality of Kodo,” 2016. [Online].
Available: http://docs.steinwurf.com/kodo/kodo-cpp/tutorial/
the basics.html [Accessed: 2016-06-04]

[28] ——, “wurf.it media streaming service,” 2016. [Online]. Available:
http://steinwurf.com/wurf-it/ [Accessed: 2016-05-01]

[29] A. Voica, “PowerVR Series7XT GPUs push graphics
and compute performance to the max,” 2014. [Online].
Available: http://blog.imgtec.com/powervr/powervr-series7xt-
gpus-push-graphics-and-compute-performance [Accessed: 2016-
06-04]

[30] M. Wang and B. Li, “Lava: A reality check of network coding
in peer-to-peer live streaming,” in INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE. IEEE,
2007, pp. 1082–1090.

[31] ——, “R2: Random push with random network coding in live
peer-to-peer streaming,” Selected Areas in Communications, IEEE
Journal on, vol. 25, no. 9, pp. 1655–1666, 2007.

[32] P. Zhang, Y. Jiang, C. Lin, Y. Fan, and X. Shen, “P-coding: secure
network coding against eavesdropping attacks,” in INFOCOM,
2010 Proceedings IEEE. IEEE, 2010, pp. 1–9.

https://geti2p.net/en/
http://us.blizzard.com/en-us/company/about/legal-faq.html
http://us.blizzard.com/en-us/company/about/legal-faq.html
https://github.com/cjdelisle/cjdns
https://github.com/cjdelisle/cjdns
http://dx.doi.org/10.1007/978-3-642-01399-7_45
http://dx.doi.org/10.1007/978-3-642-01399-7_45
http://bramcohen.livejournal.com/20140.html
http://bramcohen.livejournal.com/20140.html
http://research.microsoft.com/apps/pubs/default.aspx?id=67246
http://research.microsoft.com/apps/pubs/default.aspx?id=67246
http://project-byzantium.org/about/
http://project-byzantium.org/about/
https://en.wikipedia.org/wiki/File:Butterfly_network.gif
https://en.wikipedia.org/wiki/File:Butterfly_network.gif
https://software.intel.com/en-us/articles/intel-and-qihoo-360-internet-portal-datacenter-big-data-storage-optimization-case-study
https://software.intel.com/en-us/articles/intel-and-qihoo-360-internet-portal-datacenter-big-data-storage-optimization-case-study
https://software.intel.com/en-us/articles/intel-and-qihoo-360-internet-portal-datacenter-big-data-storage-optimization-case-study
http://www.networkworld.com/article/2342846
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/
http://steinwurf.com/kodo/
http://docs.steinwurf.com/kodo/kodo-cpp/tutorial/recoding_data.html
http://docs.steinwurf.com/kodo/kodo-cpp/tutorial/recoding_data.html
http://docs.steinwurf.com/kodo/kodo-cpp/tutorial/the_basics.html
http://docs.steinwurf.com/kodo/kodo-cpp/tutorial/the_basics.html
http://steinwurf.com/wurf-it/
http://blog.imgtec.com/powervr/powervr-series7xt-gpus-push-graphics-and-compute-performance
http://blog.imgtec.com/powervr/powervr-series7xt-gpus-push-graphics-and-compute-performance

	Introduction
	Network Coding
	Random Linear Network Coding
	Terminology

	Scenarios
	Reliable Point-to-point Communication
	One-to-many Broadcast
	Large-scale Content Distribution
	Ad-hoc Meshed Networks
	Distributed Storage

	Implementations
	Avalanche
	R2
	UUSee
	Kodo
	wurf.it

	Lava
	CUDA

	Problems and research trends
	Vulnerability to malicious poisoning
	Confidentiality and privacy
	Performance issues and latency

	Conclusion
	References

