
State of the Art in CryptocurrencyNetwork
Simulation

Niklas Haas
Bachelor’s Thesis

Supervisor: David Mödinger, Henning Kopp
Examiner: Franz Hauck
VS Number: VS-B24-2017
Submission Date: 3.8.2017

Issued: 3.8.2017

cb This work is licenced under a Creative Commons
Attribution 4.0 International Licence.

To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/deed.en
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA
94042, USA.

http://creativecommons.org/licenses/by/4.0/deed.en

I hereby declare that this thesis titled:

State of the Art in Cryptocurrency Network Simulation

is the product of my own independent work and that I have used no other sources and
materials than those specified. The passages taken from other works, either verbatim
or paraphrased in the spirit of the original quote, are identified in each individual case
by indicating the source.
I further declare that all my academic work has been written in line with the principles
of proper academic research according to the official “Satzung der Universität Ulm zur
Sicherung guter wissenschaftlicher Praxis” (University Statute for the Safeguarding of
Proper Academic Practice).

Ulm, 3.8.2017

Niklas Haas, student number 840177

Abstract

Cryptocurrencies including Bitcoin are the focus of ongoing research, with many practi-
cal implementation questions (such as the optimal block size) left unanswered. There
exist a number of Bitcoin simulators that simulate various aspects of the network in or-
der to help answer these questions and design new cryptocurrencies.

We performa comparative study of three simulators (ns-3, Shadowand simbit) and eval-
uate their user friendliness and ease of use, performance and scaling characteristics,
adaptability to other cryptocurrencies and the range of parameters which they can sim-
ulate. We present these findings in the form of a detailed description for each simulator
as well as a tabular overview. In addition to this, we perform a comparison of the simu-
lation performance and provide the results in the form of a graph.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2
1.3 Research Questions . 3

2 Simulators 7
2.1 Shadow . 7
2.2 ns-3 . 11
2.3 simbit . 16

3 Evaluation 21
3.1 Performance Comparison . 22

4 Conclusion and Future Work 25

Bibliography 27

1 Introduction

1.1 Motivation

Over the last few years, peer-to-peer cryptocurrencies have gained considerable mo-
mentum and interest, with the originator Bitcoin [34] being followed by a plethora of
different cryptocurrencies inspired by it. Cryptocurrencies are digital currencies on top
of peer-to-peer networks, and in particular share the general characteristic of using a
blockchain to publish and synchronize immutable shared records. Aside from simple
electronic payments, cryptocurrencies havebeenadapted tomanynovel use cases such
as decentralized domain name registration and HTTPS key pinning [15], fair distributed
backupsand file storage [39], turingcomplete smart contracts [40], censor-resistantmes-
sage delivery [38] or zero-knowledge transactions [35]. In addition to extending the ca-
pabilities of the network, the core protocol has been subject to alterations. example by
replacing proof-of-work with proof-of-stake systems. [28]

Within the context of blockchains, there are many parameters which influence the be-
havior and characteristics of a network, including the number of peers, the block rate,
the block size, the transaction size, the transaction fee (where applicable), the number
and computational capacity of bad actors, the peer join/leave rate, the average peer
bandwidth, theaveragepeer storage capacity, and soon. Whendevelopingpeer-to-peer
networks based on blockchains, it can therefore be of value to be able to simulate the
network and evaluate its performance based on adjusting these variables. In doing so,
potential problems, inefficiencies or attack vectors can be revealed, and the network
can be engineered to respond better to typical real-world use cases or malicious actors.
Selection of these parameters are part of ongoing research and disputes, includingmul-
tiple current attempts to fork the Bitcoin blockchain in order to change variables such
as the block size. [3, 25]

To aid with the selection of these parameters, as well as test fundamental properties
of the network such as its resistance to bad actors and denial-of-service attacks, there
have been a number of simulation tools developed that focus on Bitcoin. However, in
practice, we find a lack of consensus or information comparing the different simulation

2 Introduction

tools and evaluating their capabilities, strengths andweaknesses. The goal of this thesis
is to serve as an evaluation of themost prominent simulators, in order to make it easier
for readers to choose the right simulator based on what properties they are trying to
examine.

1.2 Background

Bitcoin is a peer-to-peer consensus network - meaning it lacks a central authority - which
synchronizes to form what’s known as a blockchain. A blockchain is an linked list of
blocks. Each block references the previous block as part of its header, and contains a
list of transactionsmoving virtual coins fromone address to another. These transactions
andvirtual coins arewhat enables theBitcoinblockchain toact as adigital currency. The
number of these transactions per block is bound by the block size. [34]

Toprevent abuse such as trying to spend the same coin twice, all transactions contained
innewblocks are validatedbyeachpeer in thenetwork, and formingnewblocks is inten-
tionally made difficult. For Bitcoin, this block creation difficulty comes from a concept
known as proof-of-work, in which generating a new block requires brute forcing a cryp-
tographic hash, the contents of which depend on the previous block. The result of this
is that each new block takes a more or less consistent amount of computational work
to generate, with the amount of work that needs to be performed (the block difficulty)
being continuously adjusted using what’s known as a difficulty adjustment function in
order to ensure that the average frequency of blocks hits a constant target, the block fre-
quency. This entire process of forming new blocks is what’s known as mining, and the
computationalwork required is compensatedbyawardingablock reward to theaddress
of the peer (theminer) that managed to find the block. [34]

Research intoBitcoin alternatives and successors is ongoing, partly due to the fact that a
blockchain serves as a convenient synchronized ledger for any sort of fact storagewhich
is difficult to alter or censor, partly because it allows an elegant integration of mon-
etary costs and rewards into peer-to-peer protocols, and partly because of perceived
weaknesses of the Bitcoin protocol such as its reliance on the computationally waste-
ful proof-of-work scheme as the source of its robustness. One of the proposed alterna-
tives is known as proof-of-stake, in which newblocks are randomly granted to individual
addresses using a deterministic process, based on the amount of wealth that address
currently has available to spend. In essence, it rewards those who put large amounts
of money into the system (i.e. peers with a big stake in the network). [28] That being
said, proof-of-stake is currently an unproven technology that has yet to establish itself
as working reliably in practice.

1.3 Research Questions 3

1.3 Research Questions

In order to evaluate the strengths and limitations of each simulator, we ask several ques-
tions which we will attempt to answer for each studied simulator in a reasonably objec-
tive manner. Of particular interest is the ability to adapt the simulator to alternative
and domain-specific cryptocurrency, which generally go beyond simply being a Bitcoin
clone with trivial changes. The questions were chosen through a mixture of thinking
about the useful properties a Bitcoin simulator could have, as well as trying to come up
with ways to compare them objectively rather than subjectively. Some questions were
taken from [29], but the rest are original work.

1.3.1 Codemetrics and user interface

The goal of these questions is to evaluate how difficult it is to get each particular simula-
tor up and running, but also establish metrics for howwell-written the simulator’s code
is. As the testing environment, we are using Gentoo Hardened unstable, with up-to-date
versions of all involved compilers and dependencies.

• Does the software compile as-is on amodernmachine? If not, how difficult is it to
modify the software until it compiles? [29]

• Is it portable, and/or are the dependencies easily satisfied?

• How ergonomic is the interfacewithwhich the simulator can be programmed and
the results presented? Howmuch code needs to be written to automate running
multiple tests? [29]

• Doesmaking small changes to thedesirednetworkbehavior require invasivemod-
ifications to the code? How difficult is it to control the number and behavior of
peers?

• How large is the codebase, and what is the quality of its documentation? [29]

4 Introduction

1.3.2 Adaptability

The goal of this section is to evaluate how difficult it would be to adapt it to alternative
or novel cryptocurrencies, rather than simulating the existing Bitcoin network.

• Does the software depend on the official Bitcoin reference implementation1?

• Howdifficult is it to extend the set of transaction types and associated user behav-
ior? Howmany entrypoints in the code does each transaction have?

• Is it possible to embed the concept of peer-to-peer file storage and associated re-
sources (disk space, bandwidth) into the simulation?

• Is it possible to simulate proof of stake? Is it possible to modify the difficulty ad-
justment function?

1.3.3 Parametrization

The goal of this section is to evaluate how flexible a simulator is, which determineswhat
kind of real-world questions it could and couldn’t answer.

• How flexible is the range of parametrization? What can and can’t be varied during
the course of a simulation? What assumptions are hard-coded?

• Can the simulator perform automatic optimization of these variables? (For exam-
ple finding a local or global optimum of multiple variables)

• Can the simulator handle varying parameters (like the average peer bandwidth
or the number of bad actors) over the course of a simulation, or is the network
entirely static?

• Can the simulator handle joining and leaving nodes?

1bitcoind, also known as Bitcoin Core

1.3 Research Questions 5

1.3.4 Performance

The goal of these questions is to get an approximation of howwell a simulator performs,
which determines the size and complexity of networks that can be simulated, but also
the rate at which blocks can be simulated - which is important for cryptocurrencies in-
volving variable mining parameters. As a test platform for this section, we are using a
2x8-core Xeon E5-2670 machine with 64 GiB of DDR2-1333 RAM.

• What network sizes can the simulator reasonably handle?

• How well does the simulation scale with additional hardware? Can it run on mul-
tiple processors and/or machines?

• Howmuch faster than real-time is the simulation on tested hardware?

• Is it capableofnullingout thecomputational expenseofproof-of-workblockchains?

2 Simulators

In this thesis wewill be taking a look at three simulators in depth. Two of them, Shadow
[27] and ns-3 [24], are generic network simulation programs that have available Bitcoin-
specific plugins. The third, simbit [2], is a purpose-built simulator for Bitcoin written in
JavaScript. ns-3 and Shadowwere chosen for their sheer size and development activity.
simbit was chosen because it offers a high amount of flexibility and adaptability, which
we felt was unique among the Bitcoin simulators we found.

A fourth simulator, btcsimulator [33], was not included on the grounds of being unable
to get it to work properly, and the code itself breaking if one tried modifying e.g. the
number of clients in the simulation. It also had a very over-engineered design involving
a number of separate build systems. Additionally, it was designed to be used exclusively
via a web interface, which we found to exhibit communication failures with the python
backend. Therewas no developer activity [37], no response to our issues onGitHub [23],
issueswithperformance, nonexistenceof documentation, andan inspectionof the code
revealed no interesting features that none of the other three simulators provided.

2.1 Shadow

Shadow [27] is a simulator framework based on the design of “hosting” existing appli-
cations, with minor modifications, into a simulation. This is done by stubbing out key
system calls such as epoll1 in order to feed it with fake I/O events. Shadow was orig-
inally designed as part of a research project to simulate Tor, but it can be adapted to
other software by writing a plugin. [27] A plugin which wraps bitcoind is already avail-
able, forming the basis of our testing. [30, 32] This plugin has been used in the past to
demonstrate denial-of-service attacks in the reference Bitcoin software. [31, 32]

1epoll is a Linux kernel API that forms the basis of most modern asynchronous I/O operations such as
waiting for network packets.

8 Simulators

2.1.1 Installation

Shadow’s documentation consists of a handful of wiki pages documenting the installa-
tion, usage and customization processes. [14] We found Shadow to be difficult to install
inpractice, due toacombinationofunusual cmakeusageandnon-portablebuild scripts.
That said, we managed to overcome these challenges and get Shadow built, in both its
master and v1.10.2 branches, although the latter required cherry-picking some fixes.

On top of this, we had immense difficulty building the ShadowBitcoin plugin. The build
process is documented on a wiki page [14], but following them resulted in several hun-
dred build errors; ranging from usage of outdated and no longer existing library func-
tions to internal C++ errors such as references to ambiguous types. Fixing the former
issue requires downgrading several system libraries, including Shadow and bitcoind
themselves, to very specific, older versions - which by itself created some build difficul-
ties. In addition, several fixes were made to patch the source code into a working state,
but even aftermanually resolving all of the C++ build errors, we ran into LLVM internal er-
rors that prevented it from linking correctly on our test platform. Multiple upstreambug
reports exist, and at least one of them has been inexplicably closed unanswered by the
author despite the bug persisting in the code. [16] Despite these difficulties, we were
able to successfully build and run the Shadow Bitcoin plugin inside a virtual machine
running Ubuntu 14.04, which was the newest version of Ubuntu that did not exhibit the
LLVM linking errors.

2.1.2 Code Metrics

The development of Shadow is somewhat active. The project uses git, and at the time
of writing, themost recent commit was 7 hours ago, but it has only received a few dozen
commits in the past year. [13] The overall codebase excluding dependencies is about
25k SLOCs2 of mostly C with some amounts of C++. The code is styled according to a
variant of K&R style, and this style is used consistently throughout. Comments are used
sparingly, with particularly difficult or pitfall-laden parts of the code being briefly com-
mented, but there is generally no documentation of the API of internal functions. That
said, the code is fairly comprehensible.

The Shadow Bitcoin plugin consists of around 2k SLOCs of C, with some C++ wrappers,
and it was reasonably understandable and well-documented. It follows the same cod-
ing conventions as Shadow. It has not been updated to the latest version of Shadow

2Source Lines of Code, which excludes blank or commented lines

2.1 Shadow 9

(v1.11.2), and has not received any commits in the past 2 years, although themaintainer
still occasionally replies to issues.

2.1.3 User Interface

Shadow is designed to be used primarily via the command line. Configuration of the
simulation network is done via an XML file which describes the network’s nodes and
edges alongside their attributes such as packet loss, bandwidth, latency or jitter. The
documentation includes examples and explanations of the configuration format, and
the Bitcoin plugin includes a simplified example XMLwhich only includes a single region
(marked ”US”) and does not otherwise attempt to approximate the real Bitcoin network,
although this would be possible in principle. Shadow also comes with a set of python
tools to ease the creation andmodification of these XML files, although the documenta-
tion for this is incomplete or missing. [14] To perform simulations onmore complicated
networks, the XML file describing the entire network, including all connections, must be
generated independently and passed to Shadow. The authors of the Shadow Bitcoin
plugin used a special script for this purpose, but this script has not (yet) beenmade pub-
lic. [26]

Any output messages generated internally by Shadow or the plugin during the simula-
tion will be appended to a text log file, containing a timestamp (real and simulated),
pseudo-hostname, function name and message body. This includes information about
the TCP/IP stack as well as the process’s externalmetrics (CPU time andmemory usage).
In addition to this, the stdout of each simulated process is dumped into a separate log
file as-is. Bydefault, theBitcoin plugin installs a hook thatwrapsbitcoind’s internal log
callback with Shadow’s logging functions. Nonetheless, to gather blockchain-specific
statistics of interest that occur as part of the simulation, bitcoind itself must be modi-
fied to log these. [14]

Shadow includes some helper scripts that can parse the Shadow output messages and
chart them in various ways, but it only recognizes the messages built into Shadow -
meaning it will not be of much use when trying to plot custom user statistics, unless
modified to do so. [14]

10 Simulators

2.1.4 Adaptability

Shadow is inherently independent of Bitcoin and canwork with a wide range of peer-to-
peer software, due to its design of merely simulating the OS network stack and physical
network while running the program code unmodified. This makes porting new applica-
tions to Shadow considerably easier thanwriting all of the simulation logic from scratch.
Unfortunately, for the use case of simulating Bitcoin adaptations, this requires making
thosemodifications on the bitcoind codebase - which involves a considerable amount
more work than simply writing a “dry” simulator, if the protocol in question has not yet
been implemented. On the other hand, this makes it easy to test bitcoind forks that
have already been written.

Since Shadow does not stub out file I/O at all, this means that the simulated Bitcoin
nodes actually store their data on disk. For efficiency, the plugin can be configured such
that the Bitcoin nodes share the common parts of the blockchain, owing to the internal
design of bitcoind, while only the newblocks and the database storing indices into the
blockchain must be kept separate. [32] The authors claim to have successfully tested a
network involving 6000 nodes each storing a full copy of the real blockchain (which was
around 100 GB in size at the time) while only using 300 GB of storage overall. [32]

Finally, Shadowhas no built-inmodel of client behaviors, so simulating an attack on the
Bitcoin network would require writing a real proof of concept attack program and link-
ing it into theplugin (in addition tobitcoind). This is also required to simulate anything
involving blockmining or transaction generation, since the ShadowBitcoin nodes them-
selves do nothing except sending keep-alive pings. The Shadow Bitcoin plugin comes
with some examples of how this can be accomplished, but we found themmostly unus-
able: they relied on hard-coded paths on the author’s machine, uncommittedmodifica-
tions, and unpublished scripts for their basic operation. [30]

While we’ve made the claim that simulating a new cryptocurrency requires modifying
bitcoind, this is not actually true, if one is willing to discard the Shadow Bitcoin plugin.
A high-level simulation could be written as a simple program that passes a mock pro-
tocol over the wire, and given to Shadow so it can run many instances with a simulated
network topology. Shadow shouldn’t carewhether the plugin it’s running is a real world
programor a “fake” test program. Thiswould essentially give itmuchof the samepower
as a more abstract simulator like ns3, in that the simulation and protocol can be simpli-
fied to the point where adding a new transaction is easy. It also allows the ultimate in
language flexibility, since all Shadow cares about is whether or not the simulated pro-
gram uses the right I/O syscalls. So in principle, the simulation could be written in, say,
Haskell; although we have not verified whether this actually works.

2.2 ns-3 11

2.1.5 Parametrization

Shadow does not allow changing the network configuration or topology at runtime, so
simulationswith e.g. a changing hash rate, or adding and removing nodes is not directly
possible. That said, it would be possible to modify bitcoind to support nodes that do
nothing until a certain block age. Outside of existing bitcoind runtime arguments, the
Shadow Bitcoin plugin does not support a whole lot of customization; there’s no simple
way to, for example, adjust the block rate or block size; except by actuallymodifying the
relevant constants in the bitcoind code. The only thing Shadow can directly influence
as a result of the test configuration are the physical features of the network: bandwidth,
jitter, packet loss and so on, but also the CPU power associated with each node - which
means that simulations involvingbig and smallminers are inherently supported. Finally,
Shadow does not perform automatic optimization of any kind, although based on the
lack of support for directlymodifying the blockchain parameters this is understandable.

2.1.6 Performance

Shadow is capable of simulating faster than real-time (despite the fact that it ostensibly
runs black box software), limited only by processing speed. It does this by intercepting
sleep calls and instead advancing the virtual time if all nodes are sleeping. Due to the
difficulty of generating a working example of a large Bitcoin network, [26] we were un-
able to give exact performance numbers - but for the example network consisting of two
nodes, the simulation performed at 105x realtime. The authors claimed the ability to
simulate networks involving asmany as 6000 nodes in practice. [32] In order to help run
simulations involving actual block generation, the version of bitcoind used is patched
to disable verification of blocks, thus allowing clients to bypass proof-of-work. [30]

2.2 ns-3

ns-3 is a simulator framework intended to help users write purpose-built simulators by
calling library functions that it provides. It’s the third version of the ns family of discrete
event network simulators, and it was developed for the purpose of research and teach-
ing, with funding from the U.S. National Science Foundation. [24] A Bitcoin-specific plu-
gin for ns-3 is already available, which is what we will be focusing our testing on. [18]

12 Simulators

2.2.1 Installation

ns-3 comes with extensive documentation spanning several hundred pages [7] as well
as anonlinewiki containing a similar number of articles. [12] Thebuild instructionswere
detailed and following them was straightforward. We successfully built the project un-
modified. What’s worth pointing out about ns-3, however, is that the build process for
ns-3 plugins (such as the Bitcoin pluginwewere testing) is a bit unusual: Plugins are not
built separately, but they must be copied into the ns-3 source code and built alongside
it. That being said, this plugin-specific installation procedurewas also documented and
the instructions as presented workedwithoutmajor deviations. The ns-3 Bitcoin plugin
also included a helper shell script to automate this process. The build system is based
onwaf, a build framework written in Python.

2.2.2 Code Metrics

ns-3 uses mercurial. [4] The development of ns-3 is very active: At the time of writing,
themost recent change was 15 hours ago, and it has received several hundred commits
in the past year. [4] The overall codebase excluding dependencies is approximately 400k
SLOCs ofmostly C++, with somepython helper scripts here and there. The code is styled
according to GNU standards, which seems to be consistently applied throughout. Par-
ticularly difficult or pitfall-laden sections of the code appear to be commented, as well
as all public functions using the Doxygen syntax convention, but apart from that most
code is relatively uncommented. That being said, we had no issues understanding ns-3
internal code.

Thens-3Bitcoin plugin consists of around8kSLOCsof C++, formatted inwhat appears to
be Allman style. The last non-documentation commits were over a year ago. It has not
been updated for the latest version of ns-3 (3.26). It uses Git, but doesn’t follow any of
the usual git conventions - and instead routinely commits commented out code, “work
in progress” code, and dead code. [17] The code is collected into few, large files - each
with several thousand lines of code, and logic is mostly clumped into a few big func-
tions containing anywhere from hundreds to over a thousand lines of code. Comments
appear strewn throughout, but even with them we found it difficult to understand the
code mostly due to the deeply nested switch statements and lack of abstraction into
components.

2.2 ns-3 13

2.2.3 User Interface

ns-3 is designed as an extensible, general-purpose network simulator, and all function-
ality is organized into individual libraries that users can either choose to use or not. As
such, the primary interface to ns-3 is in the form of a programwhich depends on it. This
program will invoke ns-3 helper functions to create nodes, configure their topology, as-
sign them properties and behaviors, and ultimately run the simulation while printing
interesting metrics. ns-3 provides about a hundred examples of such programs [5], and
the ns3 Bitcoin plugin includes one which sets up a topology seemingly modeled after
the real Bitcoin network. [20, 21] These scripts are then built and executed by the ns-3
build framework, via ./waf --run <scriptname>. [9]

There are at least three ways in which ns-3 scripts can produce output for analysis: The
tracing framework, the logging framework and at the end of the simulation. The tracing
framework isdesigned topresenta flexiblenetworkof sources (of events), and sinks (con-
sumers of events) which can be connected to handle events one is interested in certain
ways - for example by attaching a logging sink to the “packet received” event in order to
print out interesting bits of the packet, or otherwise increment a counter or similar. [11]
The logging framework is designed to be structured in a hierarchical way that lets users
quickly enable or disable logging of components, as well as set their log level on a per-
component basis. Out of the box, pretty much everything in ns-3 can be extremely ver-
bose if one wishes it to be, by setting that component’s log level to LOG_ALL - which will
log everything from individual function calls to the results of switch statements or other
control flow within a function. [10] Finally, the script can perform detailed inspection
of the final state of the network after the simulation halts, which the ns-3 Bitcoin plu-
gin uses to print overall stats like the average block size and the block propagation time
histogram. [19] ns-3 also includes libraries to help users take various gathered statistics
and turn them into gnuplot graphs.

2.2.4 Adaptability

ns-3 is inherently independent of Bitcoin and can simulate any sort of conceivable net-
work protocol, at the cost of the user having to specify the application logic for any sim-
ulated protocol.3 Writing a simulated model of a protocol is generally much easier than

3Incidentally, ns-3 also supports a mode called DCE (Direct Code Execution) which aims to wrap real
applications inside ns-3 in order to simulate their logic directly, similar to Shadow, but this seems to
be somewhat obscure and less-used so we mention it only in passing. Its use also defeats some of
ns-3’s advantages, such as the ability to test protocol modifications without fully implementing them
in bitcoind.

14 Simulators

actually implementing it, because one canmake assumptions about the clients (due to
controlling them all), and stub out parts of the logic that are not relevant to the simula-
tion. The simulated protocol can also be limited to a subset of the full protocol, focusing
only on the behavior one is interested in.

To simulate protocols, ns-3 simulates the network stack to the level of individual pack-
ets, which allows themost flexibility in terms of simulating things like TCP overhead due
to packet loss, jitter, latency and other sources of real-world headaches. ns-3 can sim-
ulate Ethernet/CSMA, WiFi, IPv4+ARP, IPv6+ICMPv6, TCP, UDP and others. [6, 8] That be-
ing said, applicationsdon’t have to implement the realwire protocol they are simulating.
The ns-3 Bitcoin plugin, for example, passes allmessages in a pseudo-protocol based on
JSON, thus making it easier to parse. One could also directly serialize a constant-sized
struct, which reduces parsing to a pointer cast.

The plugin in particular supports has built-in tables of region-specific hash rates and
node counts for Bitcoin, Litecoin and Dogecoin. It also supports some existing, novel (at
the time) technologies such as SPV4 and BlockTorrent5. The definition of the protocol
itself is largely contained inside a single function, which is essentially a single 1500-line
switch statement containing the implementation of every protocolmessage. In practice,
we found reading, understanding and extending it to be very difficult due to high levels
of nesting, lack of abstraction andmixture of business logic with parsing logic.

It’s also worth pointing out that the bitcoin plugin does not implement the full Bitcoin
protocol - it restricts itself to the subset of messages concerning itself with block gener-
ation and transmission. There is no implementation whatsoever, for example, for indi-
vidual transactions. (For statistics, the simulation simply assumes the number of trans-
actions is equal to the block size divided by the average transaction size). This means
that adding support for the simulation of new transaction types would depend on first
implementing support for sending transactions at all.

There is no built-in support for proof-of-stake whatsoever, so simulation of this would
have to be implemented from scratch. On the other hand, the ns-3 Bitcoin plugin does
implement some rudimentary support for naive proof-of-work attackers, e.g. a double-
spending attacker that tries to fork the blockchain (with a configurable hash rate).

4Simple Payment Verification (SPV) is a technique for running lightweight Bitcoin clients that can verify
transactions without storing an entire copy of the blockchain. [34]

5BlockTorrent combines Bitcoin with techniques from the BitTorrent protocol to speed up the propaga-
tion of new blocks. [36]

2.2 ns-3 15

2.2.5 Parametrization

The Bitcoin plugin supports a handful of parameters which are designed to be config-
urable at runtime as command line arguments. These include configuration of the over-
all network (number of nodes/miners) as well as some fixed static assumptions (block
size, block timeout, block rate) and associated protocol usage patterns (blocktorrent,
block broadcast type). However, these parameters are designed to be constant through-
out the course of a simulation. There’s no built-in ability to adjust the block rate as a
function of the block age, for example. Such logic would have to be hard-coded into
the simulation, e.g. bymodifying the difficulty adjustment function in the Bitcoinminer
definition.

ns3 supports no built-in ability to perform automatic optimization of runtime config-
urable parameters, so any such optimization would have to be done using additional
client software. ns3 also does not inherently support nodes joining and leaving the net-
work as part of the simulation, but it would be technically possible to have “conditional
nodes” which are initially part of the network but only enable their functionality past
a certain block age, to simulate the effect of joining and leaving nodes to some degree.
This would, however, also have to be done bymodifying the simulation source code.

2.2.6 Performance

The Bitcoin simulation does not actually perform proof of work; blocks are instead gen-
erated by “sleeping” for a certain amount of time (calculated based on the current block
difficulty and hash rate). This is done by using the ns3 simulator’s built-in scheduling ca-
pabilities, which can schedule events on a simulated real-world timeframe (but which
may actually run at several times normal speed). [22]

ns3 supports distributed computing based on the MPI standard, which the simulation
can take advantage of. The ns-3 Bitcoin plugin supports this out of the box, and in prac-
tice we were able to scale the simulation up to all 32 cores of the test machine. In prin-
ciple, MPI also allows horizontal scaling across machines, but this was not tested. In
practice, we were able to obtain a 17x speedup over real-time on a network consisting
of 10,000 nodes and 16miners, with an average of 5–10 connections per node, and a 48x
speedup over real-time on a network with 1,000 nodes. This makes ns-3 very viable for
simulations involving thousands of nodes.

16 Simulators

2.3 simbit

simbit [2] is a standalone simulator written in JavaScript which was specifically written
for the purpose of simulating consensus networks including Bitcoin. It is designed for
both simulation and visualization (by running inside the browser). [2] simbit appears
to be a hobby project by a single developer, with no academic publication tied to its
creation.

2.3.1 Installation

Despite running in thebrowserunmodified, simbit comeswitha fewdependencieswhen
running offline (via Node.js). One of these dependencies relied on a deprecated API call
that was removed in Node 0.12, and therefore did not work out of the box on newerma-
chines. That said, patching this was a trivial one-line change, and we have submitted
the fix upstream.

2.3.2 Code Metrics

The project uses git, but has not seen any activity within the past year. The overall
codebase excluding dependencies is about 1500 SLOCs of JavaScript. The code is con-
sistently styled, and contains a reasonable amount of internal comments. The project
comes with a README file detailing the usage of the simulator, the API, and a handful
of examples providing a guideline on how to simulate different scenarios including a
selfish mining attack, and a simulation that measures the broadcast latency within the
network. [1]

Beingwritten in JavaScript, simbitmakesheavyuseof a callback-orientedprogramming
style, which we found somewhat difficult to follow in places. That said, due to the rel-
atively small size of the project, it was still possible to quickly establish an overview of
the architecture and work from there.

2.3 simbit 17

Figure 2.1: Example of the simbit network visualization. This is a series of screen-
shots of a running simulation illustrating broadcast latency. The nodes
colored in red have already received the broadcast, and are in the pro-
cess of sending it to their neighbours. The connections with current
activity are highlighted in black.

2.3.3 User Interface

The simulator is presented as a JavaScript librarywhich can be included in a standalone
program (suchas theprovidedsim.js) andused to run simulations. There is no concept
of command-line parameters or other sources of configuration except for the contents
of the JavaScript program using it. As such, modifications to the network, hash rate, or
numberofpeers requireadjusting the sourcecode;while automatedexperimentswould
require programming the automation into the JavaScript file.

In terms of output, the code has some diagnostic console.log calls strewn throughout
the implementation, and users are encouraged to do the same for their own statistics.
Apart from this, the library comes with a built-in network visualization (see Figure 2.1),
which users can interact with by programmatically changing the color of nodes.

2.3.4 Adaptability

simbit is purpose-built for Bitcoin, but is technically organized in away thatwould allow
the more abstract components to be reused for other consensus networks. Fundamen-
tally, it provides abstractions for peer-to-peer networks and swarmconsensus, and then
implements Bitcoin as an extension of this interface. Modifying it to support other peer-
to-peer networks, including any sort of Bitcoin variant, would be doable.

18 Simulators

To simulate protocols, simbit uses a very high level approach involving events and call-
backs. There’s no simulation of a protocol per se, nor is there any concept of a network
stack - butmessages do arrivewith a simulated delay based on the randomizeddistance
between peers. There are no higher-level simulations of different regions, or of inter-
regional and intra-regional latencies, although modifying the simulator to support this
should be nomore than a few lines of code.

There is no-built in support for alternative technologies like proof-of-stake, so the code
would definitely have to be modified to simulate anything other than the naive Bitcoin
network, but it does include a handful of simulations for attack scenarios including self-
ish mining, as well as a simulation of the broadcast propagation time.

Unlike both ns-3 and Shadow, simbit performs a full simulation of the blockchain includ-
ing transactions (and transaction validation). This wouldmake it a suitable host for any
simulations involving interactions on the transaction level.

2.3.5 Parametrization

simbit has no runtime-configurable parameters at all, but a fewnumbers are easilymod-
ified in the simulation file. These include the block rate, the number of peers, the overall
hash rate, and the simulation duration. Changing anything else would require more in-
vasive changes to the code, although due to the high level nature and small codebase,
we found it easy to quickly identify the right places to make such changes.

The simulator does not support any form of automatic optimization, although there’s
a proof-of-concept script that dispatches a bunch of simulators with slightly altered pa-
rameters on EC-2 nodes and collects the results.

simbit fully supports nodes joining and leaving the network at arbitrary points in time;
and it is possible to interleave simulation ticks with network updates without resetting
the blockchain, a feature whichmade it stand out among the alternatives. On the other
hand, simbit has no model of regions, nor does it try distinguishing between mining
peers and non-mining peers - every simbit node is a miner.

2.3 simbit 19

2.3.6 Performance

simbit is written entirely in single-threaded JavaScript, and does therefore not benefit
from horizontal scaling of any kind, but it does stub out proof-of-work. In practice, we
found that the performance decreases significantly with both the total number of nodes
and the total lengthof the simulatedblockchain. Thenetworkswewere able to simulate
comfortably were only about 100 nodes large.

3 Evaluation

We have found that the different available Bitcoin simulators differ in both their design
and their capabilities, which influences the choice of a Bitcoin simulation software de-
pending on the requirements of the project. For a detailed list of differences between
simulators, see Table 3.1. Shadow ismostly geared towards the simulation of the under-
lyingnetwork and software implementation, andwill gather statistics related tonetwork
bandwidth, client processing time or propagation latency. It is useful for verifying that
your software is resistant to floods or denial of service attacks, but is less useful for es-
tablishing the behavior of your blockchain. Adapting Shadow to new cryptocurrencies
requires modifying bitcoind directly.

ns-3 is mainly focused on efficiently simulating a static network modeled after the real
Bitcoin network. It can efficiently simulate large numbers of nodes, including simulated
miners, and scales horizontally very well. It is useful for evaluating a network’s resis-
tance to mining attacks, but also gathering high-level network statistics such as block
propagation times in large networks. As a downside, the ns-3 Bitcoin plugin is unable to
simulate transactions. Adapting ns-3 to new cryptocurrencies requires modifying a C++
plugin.

simbit is mainly focused on allowing dynamic network behavior including transactions
and joining/leaving nodes. It can be used tomodel per-transaction behavior, whichmay
be important when developing domain-specific cryptocurrencies. As a downside, it is
fairly slow compared to the alternatives, and does not parallelize. It also does not ap-
proximate the real Bitcoin network. Adapting simbit to new cryptocurrencies requires
modifying its JavaScript source code.

22 Evaluation

Examinedmetric Shadow ns-3 simbit
Installation Difficult Easy Easy
Dependencies easily satisfied? No Yes Yes
General ease of use Difficult Easy Easy
Language C C++ JavaScript
License BSD-3 GPL-2 MIT
Lines of code (approximate) 27,000 408,000 1,500
Documentation Moderate Ample Lacking
Depends on bitcoind Yes No No
Can import real blockchain data Yes No No
Protocol modifications Difficult Difficult Easy
Simulates low-level protocol Yes No, but possible No
Simulates proof-of-stake No No No
Simulates block creation Possible Yes Yes
Simulates transactions Possible No Yes
Modification of parameters Invasive Simple Simple
Automatic optimization No No No
Simulates latency Yes Yes Yes
Simulates regions Possible Yes No
Simulates full network stack Yes Yes No
Joining and leaving nodes No No Possible
Typical network size 5,000–10,000 [27] 10,000–20,0001 500–1,000
Multi-core scaling Yes Yes No
Multi-machine scaling No MPI No
Nulls out proof-of-work Yes Yes Yes

Table 3.1: An overview of the capabilities of each tested simulator. An entry
marked as “Possible”means that the simulator design supports the fea-
ture, but it would take some additional work to enable.

3.1 Performance Comparison

Figure 3.1 illustrates the scaling and performance differences of ns-3 and simbit when
generating blocks. Shadowwas not included in this comparison due to the Shadow Bit-
coin plugin’s inability to simulate block creationwithout furthermodifications. The ns-3
tests were run using multi-threading across 32 threads, except for the smallest two net-
works, for which we used 8 and 16 threads respectively because there were not enough
nodes to evenly distribute across 32 threads. All tests were run roughly 5 times and the
1Assuming scaling across multiple machines

3.1 Performance Comparison 23

results averaged.2 Care needs to be taken when directly comparing ns-3 and simbit due
to their different internal network design. In simbit, every node is a miner, but ns-3 dis-
tinguishes betweenminers and non-miners. If we try andmake every ns-3 node aminer,
we run into problems because ns-3 always fully connectsminers. This leads to the num-
ber of simulated connections scaling quadratically with the number of nodes, which is
unrealistic for large networks. Modifying this logic was intrusive and difficult, so we de-
cided to instead cap the number of active miners at around 10% of the total network
size. At that point the effect of the number of total nodes dominated, and the number
of connections simulated overall was comparable to simbit networks of equal size. By
doing so, wemanaged to normalize both networks to have an average of 10 connections
per node, which we feel makes the results directly comparable.

Anexaminationof the results reveals thatns-3exhibits almostno speed lossasa result of
increasing the simulation duration, whereas simbit seems to lose performance steadily
as the number of mined blocks increases. In terms of the network scaling, both ns-3
and simbit scaled linearly with the number of nodes in the network. In theory, as the
network size tends towards infinity, ns-3’s performance should scale quadratically with
the number of nodes - due to to its hard-coded behavior of fully connecting all miners
with every other miner. In practice, however, we find this effect negligible for the tested
network sizes. In summary, ns-3 is several orders of magnitude faster than simbit, due
primarily to its strong support for horizontal scaling, implementation in C++ as opposed
to JavaScript, and improved internal design.

2The longest tests were repeated less often due to the time required, down to a minimum of 3, and the
shortest tests were repeatedmore often.

24 Evaluation

101 102 103
101

102

103

Blocks

Sp
ee
du

p

ns-3
simbit

101 102 103
101

102

103

104

Nodes

Sp
ee
du

p

ns-3
simbit

Figure 3.1: The top graph shows the speedup compared to real-time as function of
the number of blocks mined, with the network size fixed to 100 nodes.
The bottom graph shows the speedup compared to real-time as a func-
tionof thenetwork size, with the simulationduration fixed to 50blocks.
Both graphs show averaged figures, with the error bars indicating the
standard deviation.

4 Conclusion and Future Work

We find that all simulators examinedhavedifferent areasof interest, strengths andweak-
nesses. Shadow excels at testing for attacks on real-world implementations of cryp-
tocurrencies, but is difficult to set up and use. ns-3 offers high performance and many
features, but the Bitcoin plugin is poorly written and very difficult toworkwith. simbit is
high level and easy to quickly modify, and therefore suitable for prototyping new ideas,
but it suffers from poor performance and a very simplistic network architecture. None
of the tested simulators stood out as being obviously better than the rest, instead each
showed their own problems.

Writing a simulator capable of both protocol flexibility and high scalability remains to
be done. We also find that none of the simulators or simulation frameworks supported
automatic optimization of parameters to find a global minimum. As such, picking these
parameters by hand to minimize bandwidth, CPU time, propagation latency and so on
remains an open problem.

Finally, it’s worth mentioning that all of the tested Bitcoin simulators have been essen-
tially abandoned by their authors, receiving no updates to modern versions of their de-
pendencies.1 This resulted ina fair amountof difficulty getting themtowork. In addition
to writing a new simulator from scratch, it would be useful to take over maintainership
of one of these abandoned projects and keep it up to date.

1For ns-3 and Shadow, the simulation frameworks themselves are still being actively developed - just
not the Bitcoin-specific plugins.

Bibliography

[1] Bowe, Sean. simbitDocumentation. URL:https://github.com/ebfull/simbit/
blob/master/README.md (visited on 07/06/2017).

[2] Bowe, Sean. simbit: javascript p2pnetwork simulator. URL:https://github.com/
ebfull/simbit.git (visited on 12/01/2016).

[3] Jean-Pierre Buntinx.BTCForkDeveloperWill SoonRelease aBitcoinUAHFClient Ca-
pable of Increasing Block Size to 16 MB. URL: http://www.newsbtc.com/2017/
06/30/btcfork-developer-will-soon-release-bitcoin-uahf-client-
capable-increasing-block-size-16-mb (visited on 06/30/2017).

[4] ns-3 developers. ns-3 Development Tree. URL: http://code.nsnam.org/ns-3-
dev/shortlog (visited on 07/06/2017).

[5] ns-3 developers. ns-3 development tree: examples. URL: http://code.nsnam.
org/ns-3-dev/file/8dbfaa3bc882/examples (visited on 07/06/2017).

[6] ns-3 developers. ns-3 development tree: src/internet/model. URL: http : / /
code.nsnam.org/ns- 3- dev/file/8dbfaa3bc882/src/internet/model
(visited on 07/06/2017).

[7] ns-3 developers. ns-3 Documentation. URL: https://www.nsnam.org/docs/
release/3.26/tutorial/html/index.html (visited on 06/07/2017).

[8] ns-3 developers. ns-3 Documentation: Building Topologies. URL: https : / / www .
nsnam.org/docs/release/3.26/tutorial/html/building-topologies.
html (visited on 06/07/2017).

[9] ns-3 developers.ns-3Documentation: RunningaScript. URL:https://www.nsnam.
org/docs/release/3.26/tutorial/html/getting-started.html#running-
a-script (visited on 06/07/2017).

[10] ns-3 developers. ns-3 Documentation: Using the Logging Module. URL: https://
www.nsnam.org/docs/release/3.26/tutorial/html/tweaking.html#
using-the-logging-module (visited on 06/07/2017).

[11] ns-3 developers. ns-3 Documentation: Using the Tracing System. URL: https://
www.nsnam.org/docs/release/3.26/tutorial/html/tweaking.html#
using-the-tracing-system (visited on 06/07/2017).

https://github.com/ebfull/simbit/blob/master/README.md
https://github.com/ebfull/simbit/blob/master/README.md
https://github.com/ebfull/simbit.git
https://github.com/ebfull/simbit.git
http://www.newsbtc.com/2017/06/30/btcfork-developer-will-soon-release-bitcoin-uahf-client-capable-increasing-block-size-16-mb
http://www.newsbtc.com/2017/06/30/btcfork-developer-will-soon-release-bitcoin-uahf-client-capable-increasing-block-size-16-mb
http://www.newsbtc.com/2017/06/30/btcfork-developer-will-soon-release-bitcoin-uahf-client-capable-increasing-block-size-16-mb
http://code.nsnam.org/ns-3-dev/shortlog
http://code.nsnam.org/ns-3-dev/shortlog
http://code.nsnam.org/ns-3-dev/file/8dbfaa3bc882/examples
http://code.nsnam.org/ns-3-dev/file/8dbfaa3bc882/examples
http://code.nsnam.org/ns-3-dev/file/8dbfaa3bc882/src/internet/model
http://code.nsnam.org/ns-3-dev/file/8dbfaa3bc882/src/internet/model
https://www.nsnam.org/docs/release/3.26/tutorial/html/index.html
https://www.nsnam.org/docs/release/3.26/tutorial/html/index.html
https://www.nsnam.org/docs/release/3.26/tutorial/html/building-topologies.html
https://www.nsnam.org/docs/release/3.26/tutorial/html/building-topologies.html
https://www.nsnam.org/docs/release/3.26/tutorial/html/building-topologies.html
https://www.nsnam.org/docs/release/3.26/tutorial/html/getting-started.html#running-a-script
https://www.nsnam.org/docs/release/3.26/tutorial/html/getting-started.html#running-a-script
https://www.nsnam.org/docs/release/3.26/tutorial/html/getting-started.html#running-a-script
https://www.nsnam.org/docs/release/3.26/tutorial/html/tweaking.html#using-the-logging-module
https://www.nsnam.org/docs/release/3.26/tutorial/html/tweaking.html#using-the-logging-module
https://www.nsnam.org/docs/release/3.26/tutorial/html/tweaking.html#using-the-logging-module
https://www.nsnam.org/docs/release/3.26/tutorial/html/tweaking.html#using-the-tracing-system
https://www.nsnam.org/docs/release/3.26/tutorial/html/tweaking.html#using-the-tracing-system
https://www.nsnam.org/docs/release/3.26/tutorial/html/tweaking.html#using-the-tracing-system

28 Bibliography

[12] ns-3 developers. ns-3 Wiki. URL: https://www.nsnam.org/wiki/Main_Page
(visited on 06/07/2017).

[13] Shadow Developers. Shadow Development Tree. URL: https : / / github . com /
shadow/shadow/commits/master (visited on 07/06/2017).

[14] Shadow Developers. ShadowWiki. URL: https://github.com/shadow/shadow/
wiki (visited on 07/06/2017).

[15] Durham, Vincent and Kraft Daniel and others. Namecoin: a trust anchor for the in-
ternet. URL: https://namecoin.org/ (visited on 01/12/2017).

[16] Frankenmint. GitHub issue: make fails. URL: https : / / github . com / shadow /
shadow-plugin-bitcoin/issues/3 (visited on 07/06/2016).

[17] Arthur Gervais. Bitcoin Simulator. URL: https://github.com/arthurgervais/
Bitcoin-Simulator/commits/master (visited on 06/07/2017).

[18] Arthur Gervais. Bitcoin Simulator: An open-source bitcoin simulator built on NS3.
URL: http://arthurgervais.github.io/Bitcoin- Simulator/ (visited on
12/01/2016).

[19] Arthur Gervais. Bitcoin Simulator: scratch/bitcoin-test.cc:767. URL: https:
//github.com/arthurgervais/Bitcoin-Simulator/blob/master/scratch/
bitcoin-test.cc#L767 (visited on 06/07/2017).

[20] Arthur Gervais. Bitcoin Simulator: scratch/bitcoin-test.cc:79. URL: https:
//github.com/arthurgervais/Bitcoin-Simulator/blob/master/scratch/
bitcoin-test.cc#L79 (visited on 06/07/2017).

[21] Arthur Gervais. Bitcoin Simulator: src/applications/model/bandwidth-
distributions.h. URL: https : / / github . com / arthurgervais / Bitcoin -
Simulator/blob/master/src/applications/model/bandwidth-distributions.
h (visited on 06/07/2017).

[22] ArthurGervais.BitcoinSimulator:src/applications/model/bitcoin-miner.cc.
URL: https : / / github . com / arthurgervais / Bitcoin - Simulator / blob /
master/src/applications/model/bitcoin-miner.cc (visited on 06/07/2017).

[23] NiklasHaas.GitHub issue: ‘npm install‘ fails building ‘bufferutil‘ and ‘utf-8-validate‘.
URL: https://github.com/tagoro9/btcsimulator/issues/1 (visited on
06/19/2016).

[24] Henderson, Tom and Riley, George and Floyd, Sally and Roy, Sumit et al. ns-3: a
discrete-event network simulator for Internet systems. URL: https://www.nsnam.
org/ (visited on 12/14/2016).

[25] Alyssa Hertig. Explainer: What Is SegWit2x and What Does It Mean for Bitcoin? URL:
http://www.coindesk.com/explainer- what- is- segwit2x- and- what-
does-it-mean-for-bitcoin (visited on 07/12/2017).

https://www.nsnam.org/wiki/Main_Page
https://github.com/shadow/shadow/commits/master
https://github.com/shadow/shadow/commits/master
https://github.com/shadow/shadow/wiki
https://github.com/shadow/shadow/wiki
https://namecoin.org/
https://github.com/shadow/shadow-plugin-bitcoin/issues/3
https://github.com/shadow/shadow-plugin-bitcoin/issues/3
https://github.com/arthurgervais/Bitcoin-Simulator/commits/master
https://github.com/arthurgervais/Bitcoin-Simulator/commits/master
http://arthurgervais.github.io/Bitcoin-Simulator/
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/scratch/bitcoin-test.cc#L767
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/scratch/bitcoin-test.cc#L767
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/scratch/bitcoin-test.cc#L767
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/scratch/bitcoin-test.cc#L79
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/scratch/bitcoin-test.cc#L79
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/scratch/bitcoin-test.cc#L79
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/src/applications/model/bandwidth-distributions.h
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/src/applications/model/bandwidth-distributions.h
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/src/applications/model/bandwidth-distributions.h
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/src/applications/model/bitcoin-miner.cc
https://github.com/arthurgervais/Bitcoin-Simulator/blob/master/src/applications/model/bitcoin-miner.cc
https://github.com/tagoro9/btcsimulator/issues/1
https://www.nsnam.org/
https://www.nsnam.org/
http://www.coindesk.com/explainer-what-is-segwit2x-and-what-does-it-mean-for-bitcoin
http://www.coindesk.com/explainer-what-is-segwit2x-and-what-does-it-mean-for-bitcoin

Bibliography 29

[26] Rob Jansen. GitHub issue: Examples for more complicated networks? URL: https:
/ / github . com / shadow / shadow - plugin - bitcoin / issues / 12 (visited on
07/06/2016).

[27] Rob Jansen andNicholasHopper. “Shadow: Running Tor in aBox for Accurate and
Efficient Experimentation”. In: Proceedings of the 19th SymposiumonNetwork and
Distributed System Security (NDSS). Internet Society, Feb. 2012.

[28] Sunny King and Scott Nadal. “Ppcoin: Peer-to-peer crypto-currencywith proof-of-
stake”. In: self-published paper, August 19 (2012).

[29] Johannes Lessmann, Peter Janacik, Lazar Lachev, and Dalimir Orfanus. “Compar-
ative study of wireless network simulators”. In: Networking, 2008. ICN 2008. Sev-
enth International Conference on. IEEE. 2008, pp. 517–523.

[30] Miller, Andrewand Jansen, Rob. shadow-plugin-bitcoin: A Shadowplugin that runs
the Bitcoin Satoshi reference software. URL: https : / / github . com / shadow /
shadow-plugin-bitcoin (visited on 12/01/2016).

[31] Andrew Miller. GitHub issue: Simulate block creation?? URL: https : / / github .
com/shadow/shadow-plugin-bitcoin/issues/13 (visited on 07/14/2016).

[32] Andrew Miller and Rob Jansen. “Shadow-Bitcoin: Scalable Simulation via Direct
Execution of Multi-threaded Applications.” In: IACR Cryptology ePrint Archive 2015
(2015), p. 469.

[33] Mora Afonso, Vı́ctor. Bitcoin network protocol simulator. URL: https://github.
com/tagoro9/btcsimulator (visited on 12/01/2016).

[34] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[35] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, et al. “Zerocash: Decentral-
ized anonymous payments from bitcoin”. In: Security and Privacy (SP), 2014 IEEE
Symposium on. IEEE. 2014, pp. 459–474.

[36] JonathanToomim.Torrent-stylenew-blockpropagationonMerkle trees. URL:http:
//toom.im/blocktorrent/ (visited on 07/03/2017).

[37] Victor.btcsimulator -Commits. URL:https://github.com/tagoro9/btcsimulator/
commits/develop (visited on 07/14/2017).

[38] JonathanWarren. “Bitmessage: A peer-to-peermessage authentication anddeliv-
ery system”. In:whitepaper (27November2012), https://bitmessage.org/bitmessage.
pdf (2012).

[39] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, and Vitalik Buterin. “Storj A
Peer-to-Peer Cloud Storage Network”. In: (2014).

[40] Gavin Wood. “Ethereum: A secure decentralised generalised transaction ledger”.
In: Ethereum Project Yellow Paper (2014).

https://github.com/shadow/shadow-plugin-bitcoin/issues/12
https://github.com/shadow/shadow-plugin-bitcoin/issues/12
https://github.com/shadow/shadow-plugin-bitcoin
https://github.com/shadow/shadow-plugin-bitcoin
https://github.com/shadow/shadow-plugin-bitcoin/issues/13
https://github.com/shadow/shadow-plugin-bitcoin/issues/13
https://github.com/tagoro9/btcsimulator
https://github.com/tagoro9/btcsimulator
http://toom.im/blocktorrent/
http://toom.im/blocktorrent/
https://github.com/tagoro9/btcsimulator/commits/develop
https://github.com/tagoro9/btcsimulator/commits/develop

	Introduction
	Motivation
	Background
	Research Questions

	Simulators
	Shadow
	ns-3
	simbit

	Evaluation
	Performance Comparison

	Conclusion and Future Work
	Bibliography

