
Write less, type more

or: How I learned to stop worrying and love the compiler

Niklas Haas

Abstract

Dependent types extend type systems by adding dependent functions and dependent
pairs, in which one component can depend on the value of the other (rather than just the
type). In these type systems, more programs can be expressed, and existing programs can be
restated with increased type safety. Dependent types allow coupling a program with its own
proofs of correctness, which enables dependently typed languages to be used as automated
proof checkers. In this paper we seek to provide a brief introduction to the syntax, semantics
and use cases of dependent type systems by using Haskell as an example and extending it
with dependent typing.

1 Introduction

Dependent types are a feature of type systems, which are rigorous systems for categorizing terms
in order to eliminate absurdities and paradoxes. In the context of a programming language, a
type system is responsible for rejecting “invalid” programs – programs that have nonsensical
denotational semantics.1 Every type system must make certain trade-offs between false positives
(programs that are nonsensical yet allowed nonetheless) and false negatives (programs that make
sense but aren’t expressible within the constraints imposed by the type system). Traditionally,
programming languages with nonexistant or very liberal type systems (like C or Lisp) have
erred on the side of false positives, permitting more programs at the cost of allowing undefined
behavior, runtime errors or unsafety. In contrast to this, some recent programming languages
such as Standard ML[11] and Haskell[7] include much stronger type systems, but they come
with their own cost of disallowing some “valid” programs.2 The goal of dependent types is to
improve both of these aspects, by not only making it possible to write much stronger (and hence
safer) types but also to write dependent types that could otherwise not be expressed.

In this paper, we wish to provide a basic overview of dependent types, including where they
come from and how they are used. We use a simplified Haskell-like language to provide examples
throughout, serving to both outline the shortcomings of Haskell as well as to demonstrate how
dependent types can help solve these. We also briefly explore the connections of dependent
types to predicate logic, as seen in the framework of automated proof assistants.

1This means that they have no useful “meaning”, e.g. a program which tries to subtract an integer from a
string, divide by zero or order a negative number of shoes.

2An example based on printf is provided in section 4

1

Niklas Haas

2 History and foundation

Before going into the development of dependent typing, it should serve well to explain what the
term dependent type actually refers to. It is not a theory per se, but rather a broad label used
to refer to any sort of system in which types can “depend” on other values.

A common way to do this is using axioms originally introduced by Per Martin-Löf in his
Intuitionistic Type Theory [8], which add two new concepts of type abstraction: so-called Π-
Types and Σ-Types.3 Languages which are based on this include proof assistants such as
NuPRL[5], LEGO[6], Coq[2] and more recently, programming languages such as Cayenne[1],
ATS[17], Epigram[10] and Agda[13]. Alternative foundations exist, but we will not discuss
them in greater detail.4

Per Martin-Löf’s theory was originally developed to serve as a general framework for math-
ematics in order to deal with shortcomings of systems such as axiomatic set theory as well as
to bridge the gap between mathematical logic and programming languages.[8] Examples of how
to develop a programming language based on intuitionistic type theory are given by [12], and
the first actual programming language to use these ideas is Cayenne, which was developed to
deal with shortcomings of Haskell.[1]

3 Background

In order to provide familiar examples of dependent typing in action, we will base our examples
upon a theoretical extension to the Haskell programming language. This section will serve to
establish some syntactical conventions and provide a very short outline of how to read them.

data List : : ∗ −> ∗ where
Ni l : : f o r a l l (a : : ∗) . List a
Cons : : f o r a l l (a : : ∗) . a −> List a −> List a

length : : f o r a l l (a : : ∗) . List a −> Integer
length Ni l = 0
length (Cons xs) = 1 + length xs

Figure 1: An example of Haskell syntax, defining a custom list data type and a function to
compute its length. A list is either an empty list (Nil) or a value prefixed to another list
(Cons). The length of an empty list is 0, and the length of a value prefixed to another list is 1
+ the length of the other list.

Every polymorphic type will be explicitly quantified, using Haskell’s forall syntax. This
is not normally done in Haskell because type abstraction and instantiation is automatic, but

3These are also called (dependent) product types and sum types, respectively, but this terminology is over-
loaded.

4An example is Twelf, which is based on the λΠ-calculus.[14]

2

Write less, type more
or: How I learned to stop worrying and love the compiler

this is no longer true in general when adding dependent types. In our examples, however, we
assume this was still the case and simply use forall to note the presence of a parameter which
will be automatically instantiated.5 In regular Haskell, the length function shown in figure 1
could equivalently have been given the following type signature: length :: List a -> Int

which is equivalent. A good way to read v :: forall a. T is “v has type T, given any a”.
For example, “Nil has type List a, given any type a (itself of type *)”. Note that like Haskell
we use :: for type signatures, not : which is more common among mathematical literature
and dependently typed languages.

Type variables quantified in this way will be given a type signature of their own. The special
type * refers to the type of regular data types, for example Integer :: * and Char :: *.
A type which takes another type as variable would itself have type * -> *, for example Maybe

:: * -> * and application works as usual, eg. Maybe Integer :: *.6 Roughly speaking, a
value must have a type which is itself contained in * for it to actually “exist”. For example, one
could compute and pass around a concrete value of type Maybe Integer :: *, but it makes
little sense to think about a value of type Maybe – maybe what?

Data type definitions will always be given in so-called generalized algebraic data type (GADT)
form. This makes it explicit not only what the type of a type constructor is but also what the
types of its value constructors are. The definition for List given in figure 1 could have been writ-
ten data List a = Nil | Cons a (List a), but this syntax isn’t flexible enough to describe
dependent data types.7

4 Basics of dependent typing

In this context, we will now introduce the two key concepts of dependent typing along with
motivational examples.

Suppose we wish to write a function that works like C or Java’s printf, in Haskell. The way
printf works is by accepting a format string as first parameter, which describes what kinds of
further parameters are required by the function as well as how to output them. For example,
the code

string a = "foo"

int b = 42

printf("a = %s, b = %d", a, b)

would output a = foo, b = 42.
The problem with trying to implement a function like this in Haskell arises as soon as we

begin to think about what type signature it would have in general. For example:

5Due to the practical benefits of automatic type instantiation, most dependently typed programming languages
support something similar to this for dependent functions – usually called hidden or automatic parameters.

6We assume that * -> * :: * due to convenience, however this gives rise to logical paradoxes similar to
the untyped lambda calculus. In actual dependently typed languages, there is generally a hierarchy of types
∗0, ∗1, ..∗n similar to axiomatic set theory.

7This is not strictly true in Haskell. For example, one could introduce type equivalence constraints and
existential constraint quantification, but this is needlessly complex and comes with its own difficulties.

3

Niklas Haas

printf "a = %s, b = %d" :: String -> Integer -> String

printf "%d %d %d" :: Integer -> Integer -> Integer -> String

As we can clearly see, the type of printf s depends on the contents of s itself – which
could be anything. However, Haskell’s type system is static – meaning types have to be fixed
at compile time, and cannot vary based on the value of something not known in advance. As a
result of this, there is not a possible type we could give to printf :: String -> ? in Haskell.

4.1 Type-level computations

The first thing we notice is that the result type of printf can be computed from a String,
that is, we could in theory write a function as seen in figure 2.

pr int fType : : String −> ∗
pr int fType ”” = String
pr int fType (’% ’ : ’ d ’ : r e s t) = Integer −> pr int fType r e s t
pr int fType (’% ’ : ’ s ’ : r e s t) = String −> pr int fType r e s t
pr int fType (: r e s t) = pr int fType r e s t

Figure 2: A function to compute printf’s type given a String.[1] An empty format string
implies the end of evaluation, which results in the accumulated String. Passing a format that
begins with %d or %s means the function has to take at least one extra parameter, of type
Integer (resp. String). Passing anything else just outputs that character and moves on to the
rest of the format.

Dependent typing adds the ability for functions to accept and return types, in addition to
values, as well as the ability to use the result of functions within a type signature, for example:

simple :: printfType "%d"

simple = \(n :: Integer) -> show n

This could have equivalently been written simple :: Integer -> String since the result
of printfType "%d" is constant and hence fixed at compile time.8

However, this alone does not suffice to give a type to printf because even if we were to
write printf :: String -> printfType ? we still don’t know what to fill in for the ?. This
is due to the fact that the ? is not constant but instead depends on the actual value passed to
the function.

8Indeed, Haskell with GHC extensions can already represent and work with functions similar to this – except
they’re called type (synonym) families and come with their own syntax and rules.

4

Write less, type more
or: How I learned to stop worrying and love the compiler

4.2 Dependent functions

Dependent typing deals with this shortcoming by making it possible for us to write type sig-
natures of the form (a :: A) -> B where the type B can involve the name a. If B does not
mention a, this would be equivalent to A -> B and type-checks similarly. The name a assigned
to the parameter is irrelevant other than allowing it to be mentioned in the type of the result.
An example of this as applied to printf can be seen in figure 3.

p r i n t f : : (fmt : : String) −> pr int fType fmt
p r i n t f fmt = go fmt ””

where go ”” output = output
go (’% ’ : ’ d ’ : c s) output = \(n : : Integer) −>

go cs (output ++ show n)
go (’% ’ : ’ s ’ : c s) output = \(s : : String) −>

go cs (output ++ s)
go (c : c s) output = go cs (output ++ [c])

Figure 3: An example of a dependently typed printf function.[1] The function is defined
recursively, using go to step through the format while accumulating output. When the end of
the format is reached, the output is just returned as-is. When a %d or %s is reached, we return a
function that takes one Integer or String, formats it, and appends that to the output (while
moving on to the rest of the format). Finally, if any other character is reached, that simply
gets appended to the output. The function printfType computes precisely the type necessary
to make this function type-check.

This form of type dependency is an example of intuitionistic type theory’s “dependent
functions”, formally known as Π-types.[8] The result type of a dependent function can depend
on the value of the parameter passed to it.

4.3 Lists with known length

These kinds of dependency are not only allowed in function type signatures, but also on con-
structors of data structures. For example, we could define a type of lists with fixed lengths, also
called vectors in the dependently-typed world[1], as seen in figure 4.9

The type of head as presented here is particularly interesting. In Haskell, we’re faced
with the problem that head [] throws an exception, yet head :: forall (a :: *). [a]

-> a clearly permits applications of itself to [] :: forall (a :: *). [a]. With our
dependently typed head function, the expression head VNil is a static type error, because head

requires a Vec of length n+1, yet VNil has length 0 as specified in the signature. Since 0 = n+1
has no solution for n ∈ N, this parameter n cannot possibly be chosen by the type checker.

9In this example, we assume Natural is a type like Integer but which only permits positive values.

5

Niklas Haas

data Vec : : Natural −> ∗ −> ∗ where
VNil : : f o r a l l (a : : ∗) . Vec 0 a
VCons : : f o r a l l (a : : ∗) (n : : Natural) .

a −> Vec n a −> Vec (n+1) a

replicate : : f o r a l l (a : : ∗) .
(n : : Natural) −> a −> Vec n a

replicate 0 = VNil
replicate n x = VCons x (replicate (n−1) x)

head : : f o r a l l (a : : ∗) (n : : Natural) .
Vec (n+1) a −> a

head (VCons x) = x

t a i l : : f o r a l l (a : : ∗) (n : : Natural) .
Vec (n+1) a −> Vec n a

t a i l (VCons xs) = xs

Figure 4: An example of dependently typed vectors. A vector is defined like a list, except for
the presence of an extra type parameter, of type Natural. A VNil has the length 0, a VCons x

xs has the length of xs+1. The function replicate produces a vector of given length, it works
like the equivalent function on lists except for the extra type parameter, which is captured from
the passed length n using dependent typing.

This is an example of additional type safety that can be achieved very easily with the help of
dependent typing.

4.4 Dependent pair

In addition to dependent functions like (a :: A) -> B, dependently typed programming lan-
guages introduce so-called dependent pairs as in the type (a :: A, B) where B involves a. For
example, suppose we want to implement traditional lists using our newly defined Vec. However,
a list can be of any length, that is to say, a value of type List a can be a vector of type Vec n

a for some n :: Natural. Using dependent pairs, this could be implemented as in figure 5.10

Formally, these are called Σ-types in intuitionistic type theory.[8]

As demonstrated, they’re mainly useful when programming to carry around otherwise de-
pendently typed structures when we don’t care about their properties, or when we want to
abstract over different possible implementations of something – for example type Widget =

(t :: *, t, t -> Output, Input -> t -> t) is the type of “things” that can respond to
Input and produce Output, where we don’t care about the internal representation of t. (This is

10This could also have been implemented using existential quantification in Haskell.

6

Write less, type more
or: How I learned to stop worrying and love the compiler

type List a = (n : : Natural , Vec n a)

l i s t i f y : : f o r a l l (n : : Natural) (a : : ∗) .
Vec n a −> List a

l i s t i f y v = (length v , v)
where length VNil = 0

length (VCons xs) = 1 + length xs

Figure 5: Lists implemented in terms of dependently typed vectors. A List is just Vec n of
some arbitrary length n, which is stored alongside it. To convert a vector into a list, we compute
its length and store this as the required Natural.

equivalent to the non-dependent type Widget = (Output, Input -> Widget) if given general
recursion, but that language feature is impossible in languages that aren’t turing complete.)

5 Implications of dependent typing

5.1 Turing completeness concerns

The most immediate effect of allowing types to depend on and be computed from values is
that in any Turing-complete language, due to limitations imposed by the halting problem, it is
impossible to write a general purpose type checking algorithm that will always terminate with
a result. Instead, there is the possibility that the type checking process will loop and continue
forever.[1]

Some programming languages choose to ignore this possibility, for example Cayenne only
provides an adjustable recursion limit during type checking to catch obvious errors but otherwise
makes no attempt to guarantee type checking will always succeed.[1]

Other dependently typed systems, especially those intended to be used as proof assistants
(such as Coq), instead impose a provable termination condition on functions – that is, recursion
is only allowed within certain parameters that the compiler can prove always lead to a result. A
direct consequence of this is that these languages are not Turing-complete! Hence, they cannot
strictly be used as “general purpose programming languages”. In practice, even this restriction
is not that problematic because many ways have been developed to represent common types of
recursion in terms of patterns that are known to terminate.

Most languages, such as Idris or Agda, allow one to choose between these two compromises
by having termination checking enabled by default but allowing one to selectively disable them
for specific functions or files, in which case the compiler simply assumes it actually terminates.

7

Niklas Haas

5.2 Curry-Howard correspondence

As originally noted by Haskell Curry in [4], the simply typed lambda calculus can be used to
model simple intuitionistic logic – a value of type T can be seen as a proof that T is inhabited
(“true”), and a function of type A -> B can be seen as a logical implication that given a proof
for A there exists a proof for B, or A → B. In this context, a pair type like (A, B) is like a
proof for both A and B, or A ∧ B, and a disjoint union type like Either a b is like a proof for
either A or B, or A ∨B.

In this system, the two forms of dependent types correspond to intuitionistic predicate
logic’s universal and existential quantifications. That is to say, (a :: A) -> P a corresponds
to ∀a : A.P (a) and (a :: A, P a) corresponds to ∃a : A.P (a). This greatly extends the
possibilities of using programs as proofs, which is the foundation of dependently typed proof
assistants such as Coq.

5.3 Program derivation

With the help of dependent types, it is possible to write type signatures for functions that are
so strict that there is only one or a handful of possible ways to implement them. Based on these
restrictions, some programming assistants such as those for Idris and Agda can automatically
implement the function, as well as provide interactive programming via automatic case splits,
holes and environments.11

Some proof assistants, such as Coq, provide a number of so-called program derivation tactics
that can automatically come up with even elaborate proofs of properties, based on axioms
and postulates introduced by the programmer. In practice, this can make programming in
dependently typed languages efficient and fun.

5.4 Impact and future work

Due to the amounts of safety that can be obtained from type-level computations, these features
of dependent typing have begun to make their way into non-dependently typed languages such
as GHC Haskell. Within certain parameters, GHC Haskell can even simulate full dependent
typing.[9]

Anecdotally, most recent efforts related to dependently typed programming languages seem
to go into both Agda and Idris, the latter of which is closer to Haskell. Meanwhile, Microsoft
is proposing F*, which is based on F# but dependently typed.[15] Other dependently typed
languages worth mentioning are Ur, which is a domain specific language designed for writing
provably safe web applications;[3] Dependent ML which is an extension of the ML family and
Epigram, which comes with an interactive IDE and unconventional two-dimensional syntax.[10]

Dependent type systems enjoy an active front of research and experimental languages de-
veloped to support it. Current topics of interest include alternative or additional foundations
(such as homotopy type theory[16]), as well as efforts on how to bridge the gap between exist-
ing programming languages and dependently typed ones without imposing major constraints
or sacrificing provable termination (e.g. using inductive codata types to model recursion).

11Some of these apply to and are possible for Haskell as well, but the range of possibilities is less rich.

8

Write less, type more
or: How I learned to stop worrying and love the compiler

Certainly, a lot remains to be clarified and experimented with and dependent typing may
or may not gradually find its way moving into mainstream languages, but as of 2014 it remains
a topic of experimental and research languages.

Perhaps in a near or distant future, we will all be programming in languages that allow us
to write less code and more type signatures, having our compilers not only infer the rest but
also automatically prove the result correct.

References

[1] Lennart Augustsson. Cayenne – A language with dependent types. Lecture Notes in
Computer Science, 1608, 1999.

[2] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Fillia-
tre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al.
The Coq proof assistant reference manual: Version 6.1. 1997.

[3] Adam Chlipala. Ur: Statically-typed metaprogramming with type-level record computa-
tion. In Conference on Programming Language Design and Implementation, ACM Special
Interest Group on Programming Languages, 2010.

[4] Haskell Curry. Functionality in combinatory logic. Proceedings of the National Academy
of Sciences of the United States of America, 20(11):584, 1934.

[5] Paul Jackson. The NuPRL proof development system. Reference manual and Users’s
Guide (Version 4.1), 1994.

[6] Zhaohui Luo and Robert Pollack. LEGO proof development system: User’s manual. Uni-
versity of Edinburgh, Department of Computer Science, Laboratory for Foundations of
Computer Science, 1992.

[7] Simon Marlow et al. Haskell 2010 language report. 2010. http://www.haskell.org/
onlinereport/haskell2010.

[8] Per Martin-Lof and Giovanni Sambin. Intuitionistic type theory, volume 17. Bibliopolis
Naples, 1984.

[9] Conor McBride. Faking it (simulating dependent types in Haskell). Journal of Functional
Programming, 12(4& 5):375–392, 2002. Special Issue on Haskell.

[10] Conor McBride. Epigram, 2004. http://www.dur.ac.uk/CARG/epigram.

[11] Robin Milner. The definition of standard ML: revised. MIT press, 1997.

[12] Bengt Nordström, Kent Petersson, and Jan M Smith. Programming in Martin-Löf ’s type
theory, volume 200. Oxford University Press Oxford, 1990.

9

http://www.haskell.org/onlinereport/haskell2010
http://www.haskell.org/onlinereport/haskell2010
http://www.dur.ac.uk/CARG/epigram

Niklas Haas

[13] Ulf Norell. Dependently typed programming in Agda. In Advanced Functional Program-
ming, pages 230–266. Springer, 2009.

[14] Frank Pfenning and Carsten Schuermann. Twelf user’s guide. Technical report, version
1.2. Technical Report CMU-CS-98-173, Carnegie Mellon University, 1998.

[15] Microsoft Research. The F* Project. https://research.microsoft.com/en-us/projects/
fstar/.

[16] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[17] Hongwei Xi. Applied Type System (extended abstract). In post-workshop Proceedings of
TYPES 2003, pages 394–408. Springer-Verlag LNCS 3085, 2004.

10

https://research.microsoft.com/en-us/projects/fstar/
https://research.microsoft.com/en-us/projects/fstar/
http://homotopytypetheory.org/book

	Introduction
	History and foundation
	Background
	Basics of dependent typing
	Type-level computations
	Dependent functions
	Lists with known length
	Dependent pair

	Implications of dependent typing
	Turing completeness concerns
	Curry-Howard correspondence
	Program derivation
	Impact and future work

